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ABSTRACT

Space plasmas in various astrophysical setups can often be both very hot and dilute, making them highly susceptible to waves and
fluctuations, which are generally self-generated and maintained by kinetic instabilities. In this sense, we have in situ observational evidence
from the solar wind and planetary environments, which reveal not only wave fluctuations at kinetic scales of electrons and protons but also
non-equilibrium distributions of particle velocities. This paper reports on the progress made in achieving a consistent modeling of the insta-
bilities generated by temperature anisotropy, taking concrete examples of those induced by anisotropic electrons, such as electromagnetic
electron–cyclotron (whistler) and firehose instabilities. The effects of the two main electron populations, the quasi-thermal core and the
suprathermal halo indicated by the observations, are thus captured. The low-energy core is bi-Maxwellian, and the halo is described for
the first time by a regularized (bi-)j-distribution (RKD), which was recently introduced to fix inconsistencies of standard j-distributions. In
the absence of an analytical RKD dispersion kinetic formalism (involving tedious and laborious derivations), both the dispersion and (in)sta-
bility properties are directly solved numerically using the numerical Arbitrary Linear Plasma Solver (ALPS). The results have an increased
degree of confidence, considering the successful testing of the ALPS on previous results with established distributions.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0254526

I. INTRODUCTORY MOTIVATION
Understanding the dynamics of space plasmas, such as the solar

wind and planetary environments, presumes modeling particle velocity
distributions (Kasper et al., 2002; "Stver#ak et al., 2008; Gary, 2015;
Wilson et al., 2019a; 2019b; Lazar and Fichtner, 2021). Since these
plasmas are hot and sufficiently diluted, the velocity distributions of
the particles are often not in thermal equilibrium, as also proven by in
situ observations that show the presence of suprathermal populations
and kinetic anisotropies (Verscharen et al., 2019). For the same rea-
sons, collisions are rare, and we expect that the transport of momen-
tum and energy is governed primarily by waves/fluctuations and
turbulence (Marsch, 2006; Pierrard et al., 2011; Pierrard and Pieters,
2014; Yoon, 2015).

Observations consistently report electromagnetic (EM) fluctua-
tions at kinetic proton and electron scales within the solar wind and

planetary magnetospheres, although their origins are not fully under-
stood (Jian et al., 2009; Verscharen et al., 2019). Large-scale perturba-
tions from the solar atmosphere’s coronal outflows are conveyed by
the super-Alfv#enic solar wind and decay to smaller scales where dissi-
pation occurs. Instead, locally generated fluctuations measured in situ
at small proton and electron scales can emerge from kinetic instabil-
ities driven by non-thermal features in particle velocity distribution
functions (VDFs), such as temperature anisotropy and particle beams
("Stver#ak et al., 2008; Bale et al., 2009; Wilson et al., 2013; Gary, 2015;
Gary et al., 2016; Woodham et al., 2019). It, therefore, follows that the
implications of these waves and fluctuations can be understood by
decoding the wave dispersion and stability properties of the observed
non-equilibrium distributions.

To describe these distributions, the more advanced are the
j-power-law models, which can reproduce the main kinetic
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anisotropies, but especially the suprathermal populations with
enhanced high-energy tails (Maksimovic et al., 2005; "Stver#ak et al.,
2008; Lazar et al., 2017; Wilson et al., 2019a; 2019b; Scherer et al.,
2021). The j-distribution was introduced more than five decades ago
as a global empirical model, incorporating not only the suprathermal
populations but also the quasithermal core population at low energies
(Olbert, 1968; Vasyliunas, 1968). Later, the modeling of the electron
distributions observed in situ was refined, differentiating between the
(bi-)Maxwellian core and the suprathermal halo population repro-
duced by the (bi-)j-distributions (Maksimovic et al., 2005; "Stver#ak
et al., 2008; Wilson et al., 2019a). What was revealed was that the core
and the halo can have distinct and even opposite anisotropies, e.g.,
with respect to the interplanetary magnetic field direction (Pierrard
et al., 2016). These properties are particularly important for the analy-
sis of waves and instabilities, where j-distributions have been widely
exploited (see reviews by Hellberg et al., 2005; Pierrard and Lazar,
2010; Shaaban et al., 2021).

More recently, there has been a series of advances in employing
these models in a consistent manner, as reported in the study by Lazar
and Fichtner (2021). Remarkable is the adjustment to the so-called reg-
ularized j-distributions (RKD) (Scherer et al., 2018), for which the val-
ues taken by j power exponents are no longer restricted; see also the
detailed discussion in Sec. II. The moments of the standard j-distribu-
tion (SKD) and the corresponding transport coefficients are not well-
defined for all values of j (Scherer et al., 2018). The RKD is a novel
approach to alleviate this shortcoming of the SKD. For RKDs, the
moments are well-defined for all j > 0. Compared to the SKD, how-
ever, the RKD carries increased mathematical complexity, which pre-
cludes the analytical evaluation of the general linear dispersion relation
in systems with an RKD background (Scherer et al., 2019; Lazar et al.,
2020; Husidic et al., 2022). Attempts to derive dielectric response of
plasma electrons with RKD are so far only known for longitudinal
electrostatic waves (Scherer et al., 2018; Gaelzer et al., 2024). The deri-
vation of the dielectric properties is even more difficult in the case of
magnetized plasmas with anisotropic RKD distributions.

Therefore, in this paper, we motivate the use of the Arbitrary
Linear Plasma Solver (ALPS) (Verscharen et al., 2018), for a direct
numerical evaluation of the dispersion and stability properties of RKD
plasmas. We address a series of instabilities driven by temperature
anisotropy of electron populations, which are often invoked to explain
their properties, in particular the anisotropy limitations revealed by in
situ observations ("Stver#ak et al., 2008; Xu and Chen, 2012; Lazar et al.,
2017; Shaaban et al., 2019; Yoon et al., 2024). Thus, for a temperature
excess in the direction perpendicular to the magnetic field, A
¼ T?=Tk > 1 (where k;? are directions with respect to local mag-
netic field), linear theory predicts instabilities of electromagnetic (EM)
cyclotron modes, while for an opposite anisotropy, A < 1, the kinetic
firehose instabilities can be excited. The present work restricts to the
instabilities with wavevectors that are parallel to the background mag-
netic field, which are oscillatory (with finite wave frequency) and often
prove sufficiently effective in competition with the oblique (aperiodic)
excitations (Gary and Karimabadi, 2006; Shaaban et al., 2019; Sarfraz
et al., 2022). Husidic et al. (2020) analyzed the same instabilities using
a global bi-RKD representation incorporating both the core and halo
populations, which they resolved with LEOPARD (Astfalk and Jenko,
2017), another solver for arbitrary velocity distributions. Instead, here
we adopt a more complex but also more realistic dual distribution of

the electron populations, describing accordingly to the observations a
bi-Maxwellian core and, for the first time, a bi-RKD halo. The test
cases and the new results obtained with ALPS are very promising,
offering perspectives for extended analysis of distribution models of
even greater complexity.

The structure of the paper is as follows: we begin with a brief
summary of the theory of dual core–halo modeling in Sec. II and of
the numerics of wave instability in the solver ALPS in Sec. III. This is
followed with validating the ALPS implementation against a series of
previous results, particularly those obtained by Lazar et al. (2017) for
parallel modes in plasmas with Maxwellian core and j-halo in Sec. IV,
with focus on EMEC in Sec. IVA and on EFHI in Sec. IVB. The
new results are presented and discussed in the first and second parts of
Sec. V. All findings are summarized in the concluding Sec. VI.

II. CONSISTENT DUAL DISTRIBUTIONS: MAXWELLIAN
CORE PLUS REGULARIZED j-HALO

j-Modeling is extensively utilized for diagnosing space plasmas
and conducting analysis of their kinetic properties, such as Pierrard
and Lazar (2010) or Lazar and Fichtner (2022). The j-distribution
function resembles a Maxwellian distribution at low energies but tran-
sitions to a power-law at higher energies. This power-law feature
allows for fitting the observed high-energy tails of the solar wind elec-
tron distribution, enhanced by the so-called halo component, while
representing the core with a Maxwellian (Maksimovic et al., 2005;
"Stver#ak et al., 2008). In fact, the j-model was introduced as a global
distribution incorporating both the core and halo populations (Olbert,
1968; Vasyliunas, 1968; Maksimovic et al., 1997). This way it simplifies
the analysis by reducing the number of parameters and makes it easier
to handle in both observational and theoretical studies. However, a
global j does not always provide an accurate fit to the observed distri-
butions, forcing the core and suprathermal populations to share the
same parameters, such as density, temperature, and anisotropy, which
is not fully justified (Maksimovic et al., 2005; "Stver#ak et al., 2008; Lazar
and Fichtner, 2022).

More sophisticated or composed models can reproduce multiple
components with different properties, and generally provide more
accurate details of the observed distributions (Maksimovic et al., 2005;
Wilson et al., 2019a; 2019b). For instance, at large enough heliospheric
distances (e.g., > 0:6AU), or in general, in slow solar wind, the beam-
ing (or strahl) electrons are much less dense than the core and halo
(ns " nh < nc, with nc and nh being the number densities of the core
and halo components, respectively, and ns being the number density
of the strahl component), and the observed distributions can be, when
neglecting the strahl component, better described by a dual
Maxwellian-j-model. This usually includes a bi-Maxwellian for the
core (subscript c) at low energies, and a bi-j for the suprathermal halo
(subscript h) (Maksimovic et al., 2005; "Stver#ak et al., 2008; Lazar et al.,
2017):

f ðvk; v?Þ ¼
nc
n
fcðvk; v?Þ þ

nh
n
fhðvk; v?Þ: (1)

Here vk;? is the particle velocity parallel and perpendicular to the mag-
netic background field and n ¼ nc þ nh represents the total number
density of plasma particles. Such a dual model can then reproduce dif-
ferent (even opposite) anisotropies of the core and halo, as indicated
by various events (Pierrard et al., 2016).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 32, 032109 (2025); doi: 10.1063/5.0254526 32, 032109-2

VC Author(s) 2025

 27 M
arch 2025 21:26:30

pubs.aip.org/aip/php


Thermal particle populations in a magnetized plasma, in particu-
lar those with anisotropic temperatures (with respect to the uniform
magnetic field direction), are commonly described by a bi-Maxwellian
distribution

fMðvk; v?Þ ¼ NM exp &
v2k
h2M;k

& v2?
h2M;?

 !
: (2)

Here hMk;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTM

k;?=m
q

, with the Boltzmann constant kB,

denotes the thermal speed of particles with mass m, associated
with the Maxwellian temperature TM

k;? (k;? denoting directions
with respect to the magnetic field). The normalization factor is
given by NM ¼ 1= ðp3=2hM;kh

2
M;?Þ. Early studies have ignored the

effects of suprathermal halo populations, and widely described
kinetic instabilities driven by anisotropic temperatures,
i.e., A ¼ T?=Tk 6¼ 1, limited to these idealized bi-Maxwellian dis-
tributions (Gary, 1993).

Later studies have generalized the investigations of kinetic
instabilities by adopting a bi-j-distribution, hereafter called stan-
dard j-distribution, also SKD for short (Lazar et al., 2016):

fSKD vk; v?ð Þ ¼ NSKD 1þ
v2k
jH2

k
þ v2?
jH2

?

 !&j&1

(3)

with normalization constant

NSKD ¼ 1
p3=2HkH

2
?

Cðjþ 1Þ
j3=2Cðj& 1=2Þ

: (4)

The parameter j is a dimensionless positive real number, and C
represents the Gamma function. The thermal speeds are

Hk;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTj

k;?=m
q

, with Tj
k;? ¼ j

j&3=2T
M
k;? > TM

k;?. If the SKD is

adopted as a global model, the highlighting of the new effects of the
suprathermal populations can be done by contrast with those pre-
viously obtained counting only on the bi-Maxwellian core.
However, the latter can be obtained directly in the limit j ! 1,
when the Hk;? parameters approximate the core thermal velocities
Hk;? ! hMk;M? and are therefore independent of j (Lazar et al., 2015;
Lazar et al., 2016).

From kinetic theory, the magnetohydrodynamic equations
of fluid theory can be derived by forming velocity moments Ml
of the lth order, where l 2 0; 1; 2;…f g (see general definitions
for scalar, vector, and tensor moments in Scherer et al., 2018).
All moments should exist, meaning that all Ml converge. For a
Maxwellian distribution, this condition is satisfied. However, for
an SKD, Ml < 1 only for l < 2j& 1 (Scherer et al., 2018). To
provide a meaningful description of the plasma, a kinetic tem-
perature must exist, defined in fluid theory through the second
velocity moment. If one requires the second moment l ¼ 2 to
be well-defined, the condition l < 2j& 1 demands that
j > 3=2. However, observations have identified space plasmas
with j ' 3=2 (see, e.g., Gloeckler et al., 2012). To address these
unphysical properties and the issue of divergent moments that
hinder a closed description of a physical system and imply undesired
limitations of the j-parameter, the regularized j-distribution (RKD)
fRKD was introduced (Scherer et al., 2018):

fRKD vk; v?; að Þ ¼ NRKD 1þ
v2k
jH2

k
þ v2?
jH2

?

 !&j&1

( exp &
a2v2k
H2

k
& a2v2?

H2
?

 !
; (5)

where NRKD is a normalization factor, given by

NRKD ¼ 1
p3=2HjjH

2
?W

; (6)

where

W ¼ U
3
2
;
3& 2j

2
; a2j

" #
(7)

and U denotes the Tricomi function (Scherer et al., 2019). Also it is
possible to consider more general distributions with a direction-
dependent cutoff parameter (Scherer et al., 2021). The dimensionless
cutoff parameter a controls the strength of the exponential decay and
is independent of j. The idea of the RKD is to combine the SKD with
an exponential Maxwellian-like part, to dampen the tail of the distribu-
tion, preventing the divergences associated with the SKD ensuring the
existence of all velocity moments. For a relativistic generalization of
the RKD, see Han Thanh et al. (2022).

As shown in Fig. 1 (left panel), the RKD’s power-law component
dominates at intermediate velocities compared to the exponential
function, reflecting the behavior of suprathermal particles, while the
latter dominates at very high velocities, resulting in the desired cutoff.
The significant advantage of the RKD is that all velocity moments

Mlðj; a;HÞ ) NRKDIðj; a; l;HÞ (8)

are well defined for all values of j > 0 compared to SKD (Lazar et al.,
2016) or other similar attempts (Shahzad et al., 2024). The integral
Iðj; a; l;HÞ becomes analytically solvable for all l 2 0; 1; 2;…f g and
does not diverge, making all velocity moments calculable; see the analyti-
cal expressions derived in Scherer et al. (2019), including for anisotropic
RKDs with temperature anisotropies and skewed or drifting distribu-
tions of beam-plasma systems. Therefore, an unphysical limitation of j
is no longer necessary, and the temperature is always well-defined as the
second moment of the RKD. The RKD is thus defined for any j > 0,
enabling a closed description of a physical system using fluid equations
at a macroscopic level. Furthermore, the RKD includes an SKD and a
Maxwellian distribution as limiting cases, as shown in Fig. 1 (left panel).
In the limit a ! 0, the RKD recovers the SKD from Eq. (3). In the limit
j ! 1 and a ! 0, the RKD recovers the Maxwellian distribution
from Eq. (2) under a suitable choice of H. In Fig. 1 (right panel), the
dual core–halo model is plotted: The Maxwellian core, with a higher
density, combined with a RKD halo with lower density.

The RKD has been successfully applied in practice, for example,
in macroscopic parameterizations of suprathermal populations (Lazar
et al., 2020), modeling of anisotropic distributions measured in situ in
the solar wind (Scherer et al., 2021), evaluation of transport coefficients
in non-equilibrium plasmas (Husidic et al., 2022), or Harris sheet equi-
librium modeling (Hau et al., 2023). Additionally, when a is chosen
small enough, the cutoff only occurs for velocities outside the measure-
ment range, and an RKD fit applied to measurement data provides the
same results as those previously obtained through an SKD, eliminating
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the need for extensive conversion steps (Lazar and Fichtner, 2022).
The RKD retains the flexibility of the j-distribution while ensuring
that all velocity moments converge. The RKD is thus well-suited for
describing space plasmas where nonthermal features are significant.
Overall, the RKD provides a physically consistent representation and
interpretation of suprathermal particles.

The general dispersion tensor for RKDs has not been derived yet,
but the investigation of these modes is possible with ALPS
(Verscharen et al., 2018; Klein et al., 2023). Made public in 2023, this
numerical solver directly evaluates the linear Vlasov–Maxwell disper-
sion relation in a plasma with arbitrary gyrotropic background VDFs.
Additionally, ALPS addresses irregularities and challenges encountered
with previous similar solvers (Astfalk and Jenko, 2017; Husidic et al.,
2020).

III. WAVE INSTABILITY IN NUMERICS: ALPS
We assume that the plasma fluctuations, specifically those of the

electric and magnetic fields (E and B) and those in the VDF, are small
enough to justify the application of linear theory. To investigate plasma
instabilities, one solves the kinetic dispersion relation to obtain the
complex frequency

xðkÞ ¼ xr þ ic; (9)

where k is the wavevector, and xr and c denote the real and imaginary
parts of the frequency, respectively.

To obtain this solution, one uses the linearized Vlasov equation,
providing an expression for the plasma susceptibilities vj for the jth
species (see Appendix A). These susceptibilities are then related to the
plasma’s dielectric tensor ! through

! ¼ 1þ
X

j

vj; (10)

with the unity tensor 1.
From this, one can derive

n( ðn( EÞ þ e * E ) D * E ¼ 0; (11)

where n ¼ kc=x and c is the speed of light. Solving detD ¼ 0 pro-
vides non-trivial solutions to Eq. (11) in terms of xðkÞ, which are con-
sidered the solutions to the dispersion relation. The ALPS code
(Verscharen et al., 2018) will be used to obtain these solutions.

ALPS, a parallelized numerical code written in Fortran-90, is
designed to solve Eq. (11) for various plasma conditions, including hot
non-relativistic and relativistic plasmas. The code’s versatility allows
for the examination of an arbitrary number of species with equilibrium
distribution functions f0j, accommodating arbitrary propagation direc-
tions with respect to the undisturbed magnetic field (referred to as the
“background field”).

To utilize ALPS, users need to input numerical values for
f0;jðp?; pkÞ, where pk;? denote the parallel and perpendicular compo-
nents of momentum relative to the background field. These values can
be organized into an ASCII table. Additionally, initial guesses for xr

and cmust be provided.
The code employs an iterative Newton-secant method to solve

Eq. (11), resulting in the determination of xrðkÞ and cðkÞ. For more
details on its implementation and capabilities, refer to Verscharen
et al. (2018).

IV. VALIDATION OF SOLVER ALPS
To begin with, the ALPS setup is validated against results from

Lazar et al. (2017), who solved Eqs. (B1) and (B4) via Mathematica.
This validation extends earlier ones presented, e.g., in Verscharen et al.
(2018). The VDFs are represented as a dual Maxwellian-j-model in
ALPS by using Eq. (1) with fc ¼ fM from Eq. (2) and fh ¼ fSKD from
Eq. (3). The corresponding input VDFs are shown in Fig. 1 (right
panel).

The plasma frequency is xh;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnhq2j =mj

q
, while Xj

¼ qjB0=ðmjcÞ is the non-relativistic gyrofrequency and vA;ref=c

¼ vA;j=c ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnjmj

p
c

$ %
is the reference Alfv#en speed, where mj

is the species rest mass, qj is the charge of the species, nj is the density
of the species, and the index j refers to the species, i.e., j ¼ p for
protons and j ¼ e for electrons. We use a parallel plasma beta of
bj;c ¼ 8pnckbTj;c;k=B2

0 and bj;h ¼ 8pnhkbTj;h;k=B2
0. Since it has been

FIG. 1. In the left panel, a comparison between SKD (red) and RKD, with different j and a values, and Maxwellian (blue), normalized to their maxima, with the same plasma
beta of b ¼ 1:0. When a ! 0 (black cross), the RKD approaches the SKD, while for an increasing a, the Maxwellian case is reached. With a decreasing j, the high energy
tails become more prominent. In the right panel, a comparison between the different anisotropic core þ halo VDFs (solid) and the Maxwellian Core (blue) with a density con-
trast nh=nc ¼ 0:05. The RKD/SKD-limit halos are presented with a dotted line. This represents our used core–halo model.
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demonstrated in numerous other studies that an SKD with a kappa-
dependent temperature Tj;h ¼ Tj;hðjÞ is the more natural choice, we
will only use those VDFs for our studies.

A. Electromagnetic electron cyclotron (EMEC)
instability

Since whistler or EMEC waves propagate at frequencies with xr

+ Xp and have a right-hand circular polarization, their interaction with
protons is negligible, and hence the protons are described with an isotro-
pic Maxwellian. Since the halo in the solar wind plasma tends to be more
anisotropic, hotter, and less dense than the core, the latter is assumed to
be isotropic. There may also be cases where both the core and the halo
have isotropic populations, but as shown in Lazar et al. (2018), in such
instances, the (Maxwellian) core predominantly drive the instability,
resulting in a negligible influence of the halo. This would then limit the
study of the influence of different RKD halos (Maksimovic et al., 2005).
A scenario with a low plasma beta combined with a high anisotropy and
a high plasma beta combined with a low anisotropy is studied.

For the first case, the parameters are chosen as be;c ¼ 1, be;h
¼ 0:05 and T?;e;c=Tk;e;c ¼ 1 and T?;e;h=Tk;e;h ¼ 3 with nc=n ¼ 0:9523

and nh=n ¼ 0:0477, which means a core–halo density contrast of
g¼ nh=nc ¼ 0:05. For case 2, the parameters are be;c ¼ 1, be;h ¼ 1
and T?;e;c=Tk;e;c ¼ 1:1 and T?;e;h=Tk;e;h ¼ 1 with nc=n ¼ 0:9523 and
nh=n ¼ 0:0477, which represents a core–halo density contrast of
g¼ nh=nc ¼ 0:05. For a detailed interpretation of these EMEC cases,
see Lazar et al. (2017).

The resulting dispersion curves are presented in Figs. 2 and 3.
The figures also show the frequency on the left side and growth rate on
the right side, with Maxwellian cases in blue and the SKD cases in red.
The solid lines represent the ALPS results, compared to those obtained
with Eq. (B1) with Mathematica, plotted with crosses. The agreement
for both the frequency and the growth rate for the Maxwellian distri-
bution and the SKD is excellent for both cases, validating not only the
solver ALPS itself but also the implementation of our core–halo model,
solidifying the derived RKD results in the following section.

B. Electron firehose instability (EFHI)
Furthermore, the ALPS setup is tested against similar results

from Lazar et al. (2017) for the parallel EFHI. As before, the electrons
are assumed to be a dual core–halo plasma, with the following

FIG. 2. The EMEC instability (low halo plasma beta, high halo anisotropy) with different SKD halos (blue: Maxwellian limit, red: SKD, solid: results derived with ALPS, crosses:
Mathematica results). The frequency is shown on the left, while growth rate is on the right side. All other parameters are stated above the panels.

FIG. 3. The EMEC instability (high halo plasma beta, low halo anisotropy) with different SKD halos (blue: Maxwellian limit, red: SKD, solid: results derived with ALPS, crosses:
Mathematica results). The frequency is shown on the left, while growth rate is on the right side. All other parameters are stated above the panels.
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parameters: be;c ¼ 1, be;h ¼ 4 and T?;e;c=Tk;e;c ¼ 1 and
T?;e;h=Tk;e;h ¼ 0:6 with nc=n ¼ 0:9523 and nh=n ¼ 0:0477, g ¼ 0:05.
The protons need to be described with a dual core–halo model too,
since at typical EFHI frequencies, they can interact with the electrons.
For the protons, an isotropic core T?;p;c=Tk;p;c ¼ 1:0 and isotropic
halo T?;p;h=Tk;p;h ¼ 1:0 with bp;c ¼ 1, bp;h ¼ 4 will be used.

In Fig. 4, the dispersion curves for the EFHI, with frequency on
the left-hand side and growth rate on the right-hand side are shown,
with the ALPS results plotted with solid lines, compared to the ones
derived with Mathematica by solving Eq. (B4) derived in Lazar et al.
(2017), represented with crosses. The computations are again per-
formed for a Maxwellian (blue) and a SKD with j ¼ 2:0 (red). The
agreement is also excellent. Note that the results for the Maxwellian
case differ from those presented in Lazar et al. (2017), likely due to dif-
ferences in earlier versions of Mathematica.

V. UNSTABLE SOLUTIONSWITH ANISOTROPIC RKD
HALO

We model the electron halo population with an anisotropic regu-
larized bi-j-distribution, as defined in Eq. (5). Examples of anisotropic
core–halo RKDs, used in ALPS, are displayed in Figs. 8 and 9. While
Fig. 8 is in principal the same as Fig. 1, but a more closer representa-
tion of the VDFs that are implemented in ALPS, Fig. 9 shows contour
plots of f ¼ ðnc=nÞfc þ ðnh=nÞfh for three different values of j [from
left to right ð2; 1:5; 1:0Þ] with the same a ¼ 0:2, normalized to their
maxima. One can see the anisotropy in parallel direction and the effect
of lower j-values, i.e., the decrease in f for j ¼ 1:0 with increasing
velocity is noticeable less steeper than for j ¼ 2:0. The RKD cases
allow further investigation into the effects of modifying the suprather-
mal tail through the parameters j and a, revealing their interplay in
defining plasma stability.

A. EMEC instability with RKD halo
The results for the first case (Ae;h ¼ 3:0, be;h ¼ 0:05) are shown

in Fig. 5, with frequency in the panel on the left-hand side and growth
rate in the panel on the right-hand side. RKDs with the same a are
plotted in the same dashed style, while the Maxwellian and
Maxwellian-like curves are dashed-dotted.

First, the RKD with j ¼ 2 and a ¼ 0 (dotted black) lead to the
same results as the SKD with j ¼ 2 (solid red), since there is no cutoff
of the RKDs suprathermal tails. Both curves, in frequency and growth
rate, agree very well, validating the implementation of the RKD in
ALPS. While the frequency is not expected to vary strongly for the dif-
ferent VDFs (xr=Xe generally increases with the wave number kde),
the choice of the latter should impact the growth rates noticeably. The
RKD distributions exhibit varying growth rates depending on the val-
ues of j and a. As a increases (and keeping j constant), resulting in a
more Maxwellian-like distribution, the overall growth rates decrease
(with a lower maximum, shifted to higher wave numbers), indicating
reduced instability due to the less prominent high energy tails. So as
expected, the RKD approaches the Maxwellian results with an increas-
ing cutoff, indicating a clear ordering in a regarding the maximum
growth rate. Conversely, lower a values, especially when combined
with lower j (e.g., j ¼ 1:0), lead to higher growth rates, showing that
the distribution becomes more nonthermal and thus more likely to be
unstable.

The cutoff parameter can act as a modulation parameter: The
RDK with j ¼ 1:5 and a ¼ 0:2 (yellow dotted) has obviously a larger
suprathermal population than the RKDs with j ¼ 2 and a ' 0:2,
leading to a higher growth rate compared to the latter ones. However,
the RDK with j ¼ 1:5 and a ¼ 0:2 still results in a lower maximum
growth rate than the RKD with j ¼ 2:0 and no cutoff. When using an
even higher j ¼ 1:0 (green dashed), the high energy tails, even with a
cutoff a ¼ 0:2, are dominant enough to exhibit a much higher growth
rate, and even more so for j ¼ 1:0 with a ¼ 0:1 (double-dotted
dashed, magenta), when the growth rate evolves into a much wider
peak, illustrating enhanced instability over an extended range of wave
numbers reflecting the combined impact of a minimal cutoff and
strong suprathermal presence.

This pattern signifies, as expected, that reducing j (increasing the
suprathermal component) without increasing a (keeping the cutoff rel-
atively weak) results in a more destabilizing effect. Both of the results
with high growth rates would not be achievable when using a SKD.
The mentioned plots of the VDFs, Figs. 8 and 9, are in plausible agree-
ment with the obtained results, i.e., The density of the halo component
for j ¼ 2:0 and a ¼ 0:0 is higher at high velocities than for j ¼ 1:5
and a ¼ 0:2, resulting in a higher growth rate for the former.

FIG. 4. The EFHI with different SKD halos (blue: Maxwellian limit, red: SKD with kappa dependent temperature, solid: results derived with ALPS, crosses: Mathematica results).
The frequency is shown on the left, while growth rate is on the right side. All other parameters are stated above the panels.
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The results for the second case (Ae;h ¼ 1:1, bh ¼ 1) are shown in
Fig. 6. As expected, the frequency hardly varies between the different
VDFs. Again, the results for the RKD with j ¼ 2 and no cutoff a ¼ 0
(dotted black) are in very good agreement with the SKDs results.
When a is increased to 0.2 (dashed purple) the peak growth rate shifts
toward larger wave vectors, with the maximum value slightly decreas-
ing. This reduction in growth rate and shift in peak location signals a
dampening effect due to the exponential cutoff, which begins to mod-
erate the influence of the suprathermal tail. For a ¼ 0:5 (dashed-dot-
ted teal), this effect is even more pronounced, as the maximum growth
rate peak shifts to higher wavenumbers, comparable to the Maxwellian
case, and the maximum growth rate diminishes further, even below
the Maxwellian case. Similar to the first case, when j is decreased to
1.5, but with a cutoff a ¼ 0:2 (dashed orange), the growth rate is very

similar to the SKD/RKD without cutoff, with differences mostly at low
wavenumbers. For the RKD cases with j ¼ 1:0 (dashed green and
double-dotted dashed magenta), which represent distributions with
the strongest suprathermal effects, the growth rate for both a cases
exhibits a higher maximum growth rate at low values of k. Notably,
the a ¼ 0:1 case achieves the highest peak growth rate.

Following Husidic et al. (2022), we introduce the ratios
Rc ¼ cmax;i=cmax;SKD and Rk ¼ kmax;i=kmax;SKD to compare the maxi-
mum growth rate and corresponding k-value of the SKD with those
of the other VDFs i. The results are presented in Table I for the first
case and in Table II for the second case. The results for Rc show the
described and expected behavior in both cases, although more
prominent for the case with a higher anisotropy and Rk has also a
clear ordering.

FIG. 5. The EMEC instability with different RKD halos with reference to Lazar et al. (2017), case 1. RKDs with the same a are plotted in the same dashed style, while the
Maxwellian and Maxwellian-like RKD are dashed-dotted. The RKD with no cutoff (dotted) leads to the same result as the SKD and approaches the Maxwellian results with an
increasing cutoff, exhibiting a clear ordering in a regarding the maximum growth rate.

FIG. 6. The EMEC instability with different RKD halos with reference to Lazar et al. (2017), case 2. RKDs with the same a are plotted in the same dashed style, while the
Maxwellian and Maxwellian-like RKD are dashed-dotted. The RKD with no cutoff (dotted) leads to the same result as the SKD and approaches the Maxwellian results with an
increasing cutoff, exhibiting a clear ordering in a regarding the maximum growth rate.
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B. EFHI with RDK halo
The EFHI is also extended to cases with different RKD halos,

using the same combination of j and a as for the EMEC cases. The
results are shown in Fig. 7, with the frequency in the panel on the left-
hand side and the growth rate in the panel on the right-hand side. The
structure of the chosen plot styles is the same as for the EMEC, the
results for the calculated values of Rc and Rk can be obtained from
Table III. The VDF with j ¼ 2 and no cutoff a ¼ 0 leads to the same
results as the SKD case, as expected. Increasing a to 0.2 introduces a
subtle flattening of the increase in the frequency for low wave numbers
and shifts the maximum growth rate to higher values of k. While the
shape of the peak broadens, the maximum growth rate increases. With
a further increase to a ¼ 0:5 (dashed-dotted teal), the frequency pro-
file is closely approaching the behavior of the Maxwellian case. The
growth rate in this case exhibits a low maximum value, comparable to
the Maxwellian case, just shifted to a lower value of k. The overall
shape is also similar to the Maxwellian case, with near identity for
kc=xh;p < 2, suggesting significant stabilization in the presence of a
strong exponential cutoff. When j is decreased to 1.5, while keeping
the cutoff at a ¼ 0:2, the maximum growth rate increases and is
shifted to a higher wave number, compared to the SKD/RKD no cutoff
case. Decreasing j even further to 1.0, with the same a ¼ 0:2, leads to
a noticeable higher maximum growth rate, with a more prominent,
sharper peak and with only a slight shift to higher k values. For a
smaller a ¼ 0:1, the frequency shows sharp initial rises before quickly
plateauing, compared to the SKD/RKD no cutoff results. The maxi-
mum growth rate is, compared to the previously case with higher
a ¼ 0:2, only slightly increased. The peak however, is much narrower
at lower wave numbers (in comparison to the SKD/RKD no cutoff
case), covering a much smaller range of k values. Overall, the RKD
halo model (e.g., Fig. 8) effectively illustrates the substantial impact
that varying suprathermal components have on the EFHI, underlining
the flexibility of RKD models in capturing diverse plasma environ-
ments, with even highly nonthermal components, and provides a use-
ful framework for exploring these instabilities.

VI. SUMMARY
We study the dispersion relation and linear instability of plasma

systems with a background distribution function that follows a regular-
ized bi-j-halo model. Low j values, which enhance the suprathermal
population, significantly increase growth rates and hence amplify
instability. Conversely, higher a values have a stabilizing influence by
lowering the suprathermal tail, shifting the behavior toward that of the
Maxwellian or SKD and reducing the maximum growth rates and
instability. These findings underline the importance of core–halo char-
acteristics in determining plasma wave stability.

A j < 3=2 and moderate a significantly enhance wave instability.
This parameter combination would not be accessible for a plasma rep-
resentation with an SKD. These findings are significant for under-
standing the conditions under which EMEC waves and EFHI waves
become unstable in space and astrophysical plasmas. The enhanced
instability for RKD distributions with j < 3=2 and lower a values are

FIG. 7. The EFHI with different RKD halos with reference to Lazar (2017), case 1. RKDs with the same a are plotted in the same dashed style, while the Maxwellian and
Maxwellian-like RKD are dashed-dotted. The RKD with no cutoff (dotted) leads to the same result as the SKD and approaches the Maxwellian results with an increasing cutoff,
exhibiting a clear ordering in a regarding the maximum growth rate.

FIG. 8. A comparison between the different anisotropic core þ halo VDFs for
EMEC case 1. This represents the f0 tables that are used in ALPS; the dots corre-
spond to actual data points.
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particularly relevant for environments with prevalent nonthermal pop-
ulations, such as the solar wind. Furthermore, the cutoff parameter a
can be used as a modulation parameter, which is not present in the
SKD and suggests that RKDs are a better model for capturing the
effects of nonthermal populations in certain plasma environments.
The study also demonstrated that ALPS is a powerful and versatile
numerical tool to investigate instabilities of arbitrary VDFs, justifying
its use for further studies.
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APPENDIX A: DISPERSION RELATION IN ALPS

The susceptibilities can be expressed via
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APPENDIX B: DISPERSION RELATION FOR DUAL
MAXWELLIAN-j-MODEL

The dispersion relations for the dual Maxwellian-j-model
were derived in Lazar et al. (2017) and are solved with Mathematica
for this paper.

FIG. 9. Contour plots of the different anisotropic RKD core–halo VDFs normalized to their maxima. With j ¼ ð2; 1:5; 1Þ from left to right and with a ¼ 0:2 for the first and sec-
ond plots and a ¼ 0:1 for the third one. The anisotropy in parallel directions is clearly visible. A lower j-value leads to a less steep decrease in the distribution function. Note
that ALPS uses a cylindrical coordinate system, where v? , 0; however, for illustrative purposes, negative v? values are also shown.
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1. EMEC case
For the EMEC instability, the dispersion relation reads
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with a ¼ ð1& 1:5=jÞ0:5 and the plasma dispersion function ZM for
the Maxwellian case is
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with the argument n6j;M ¼ ðx6XjÞ=ðkhj;kÞ, where 6 denotes the cir-
cular polarization and the plasma dispersion function Zj for the
SKD is
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with the argument n6j;j ¼ ðx6XjÞ=ðkhj;kÞ.

2. EFHI case
For the EFHI, the dispersion relation reads
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with l ¼ mp=me ¼ 1836 and the other parameters as above.
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