
PIC Simulations of Velocity-space Instabilities in a Decreasing Magnetic Field:
Viscosity and Thermal Conduction

Mario Riquelme1 , Eliot Quataert2 , and Daniel Verscharen3,4
1 Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

2 Astronomy Department and Theoretical Astrophysics Center, University of California Berkeley, CA 94720, USA
3Mullard Space Science Laboratory, University College London, Dorking, Surrey, UK

4 Space Science Center, University of New Hampshire, Durham, NH, USA; mario.riquelme@dfi.uchile.cl, eliot@berkeley.edu, d.verscharen@ucl.ac.uk
Received 2017 August 12; revised 2018 January 5; accepted 2018 January 8; published 2018 February 20

Abstract

We use particle-in-cell (PIC) simulations of a collisionless, electron–ion plasma with a decreasing background
magnetic field, B, to study the effect of velocity-space instabilities on the viscous heating and thermal conduction
of the plasma. If ∣ ∣B decreases, the adiabatic invariance of the magnetic moment gives rise to pressure anisotropies
with > ^∣∣p pj j, , ( ∣∣p j, and p̂ j, represent the pressure of species j (electron or ion) parallel and perpendicular to B).
Linear theory indicates that, for sufficiently large anisotropies, different velocity-space instabilities can be
triggered. These instabilities in principle have the ability to pitch-angle scatter the particles, limiting the growth of
the anisotropies. Our simulations focus on the nonlinear, saturated regime of the instabilities. This is done through
the permanent decrease of ∣ ∣B by an imposed plasma shear. We show that, in the regime  b2 20j

(b pº ∣ ∣Bp8j j
2), the saturated ion and electron pressure anisotropies are controlled by the combined effect of the

oblique ion firehose and the fast magnetosonic/whistler instabilities. These instabilities grow preferentially on
the scale of the ion Larmor radius, and makeD » D∣∣ ∣∣p p p pe e i i, , (whereD = -^ ∣∣p p pj j j, , ). We also quantify the
thermal conduction of the plasma by directly calculating the mean free path of electrons, le, along the mean
magnetic field, finding thatle depends strongly on whether ∣ ∣B decreases or increases. Our results can be applied in
studies of low-collisionality plasmas such as the solar wind, the intracluster medium, and some accretion disks
around black holes.
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1. Introduction

In low-collisionality plasmas, the change in the magnitude of
the local magnetic field ( º ∣ ∣BB ) generically drives a pressure
anisotropy with ¹ ^p pj j, , (where p̂ j, and p j, correspond to
the pressure of species j perpendicular and parallel to B). This
is a consequence of the adiabatic invariance of the magnetic
moment of particles, m º v̂ Bj j,

2 , in the absence of collisions
(where v̂ j, is the velocity of species j perpendicular to B).

These pressure anisotropies can trigger various velocity-
space instabilities, which are in principle expected to pitch-
angle scatter the particles, to some extent mimicking the effect
of collisions. The combined effect of pressure anisotropies and
velocity-space instabilities can affect various large-scale
properties of the plasma, including its effective viscosity
(Sharma et al. 2006; Squire et al. 2017) and thermal
conductivity (see, e.g., Komarov et al. 2016; Riquelme et al.
2016). This weakly collisional behavior is expected to be
important in several astrophysical systems, including low-
luminosity accretion flows around compact objects (Sharma
et al. 2007), the intracluster medium (ICM) (Schekochihin
et al. 2005; Lyutikov 2007), and the heliosphere (Maruca
et al. 2011; Remya et al. 2013).

In a previous work (Riquelme et al. 2016) we studied how
the plasma viscosity and thermal conductivity are affected by
an increase in B, which naturally drives >^ ∣∣p pj j, , . In this

paper we study the opposite case, where B decreases and
<^ ∣∣p pj j, , . In this case several velocity-space instabilities can

be excited, ultimately regulating the extent to which the
<^ ∣∣p pj j, , anisotropy can grow. When only the electron

dynamics is considered, two types of plasma waves are
expected to be driven unstable by the electron pressure
anisotropy: (i) the oblique electron firehose (OEF) modes,
which are purely growing modes, and (ii) the Alfvén/ion-
cyclotron (A/IC) modes, which are quasi-parallel, propagating
waves, driven unstable by cyclotron-resonant electrons (Li &
Habbal 2000; Camporeale & Burgess 2008).5 Similarly, in the
presence of an ion pressure anisotropy <^ ∣∣p pi i, , , there are
also two types of modes that can grow unstable: (i) the oblique
ion firehose (OIF) modes, which are purely growing modes,
and (ii) the fast magnetosonic/whistler (FM/W) modes, which
are quasi-parallel, propagating waves, excited by cyclotron-
resonant ions (Quest & Shapiro 1996; Gary et al. 1998;
Hellinger & Matsumoto 2000).6

In this work we studied the nonlinear, saturated properties of
these instabilities, making use of particle-in-cell (PIC) simula-
tions. This is achieved by continuously decreasing the strength
of the background magnetic field by externally imposing a shear
motion in the plasma. This setup is interesting since in realistic
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5 Although the A/IC modes grow at wavelengths comparable to the electron
Larmor radius, their name indicates that they correspond to the Alfvén branch
that starts as the low-wavenumber (k) Alfvén mode and then becomes the ion-
cyclotron mode at higher k.
6 Although gyrokinetic theory suggests that OIF and OEF modes correspond
to the same Alfvén-mode branch (Kunz et al. 2015; Verscharen et al. 2017), we
will consider them as separate instabilities, identifying them as two different
growth-rate maxima in k-space.
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astrophysical scenarios the pressure anisotropies are expected to
be driven (via decreasing B) for a time significantly longer than
the initial regime where the instabilities grow exponentially.

Previous works have already studied this long-term regime
by simulating an expanding (instead of shearing) plasma. These
works have used both hybrid-PIC simulations, which focused
on the evolution of the ion anisotropy-driven instabilities
(Matteini et al. 2006; Hellinger & Travnicek 2008), and PIC
simulations that mainly captured the role of electron aniso-
tropy-driven modes (Camporeale & Burgess 2010). Thus, our
work is intended to study the combined effect of the electron
and ion pressure anisotropies on the nonlinear, saturated regime
of the different unstable modes. This aspect of our study is
motivated in part by previous linear dispersion analyses
showing that the electron pressure anisotropy can significantly
influence the evolution of both the FM/W and OIF modes
(Michno et al. 2014; Maneva et al. 2016).

There are two important applications of our work. One is to
quantify the so-called “anisotropic viscosity” of the plasma,
which is controlled by the pressure anisotropies of the particles.
This viscosity is believed to contribute significantly to the
heating of electrons and ions in accretion disks and other low-
collisionality plasmas (Sharma et al. 2006, 2007; Squire
et al. 2017). Also, the nonlinear evolution of the different
velocity-space instabilities sets the pitch-angle scattering rate of
electrons, which is key to determining their mean free path and
therefore the thermal conductivity of the plasma.

The paper is organized as follows. In Section 2 we describe
our simulation setup and strategy. In Section 3 we determine the
saturated pressure anisotropy Dpj of ions and electrons,
describing the physical mechanisms responsible. In Section 4
we quantify the ion and electron heating. In Section 5 we
measure the mean free paths of electrons and ions, and determine
their dependence on the physical parameters of the plasma. In
Section 6 we summarize our results and discuss their
implications for various low-collisionality astrophysical plasmas.

2. Simulation Setup

We use the electromagnetic, relativistic PIC code TRISTAN-
MP (Buneman 1993; Spitkovsky 2005) in two dimensions. The
simulation box consists of a square box in the x–y plane,
containing an initially isotropic plasma with a homogeneous initial
magnetic field B0. We simulate a decreasing magnetic field by
imposing a velocity shear given by = - ˆv sxy , where s is the
shear rate of the plasma and x is the distance along x̂ (x̂ and ŷ are
the unit vectors parallel to the x and y axes, respectively). From
flux conservation, the x and y components of the mean field
evolve as á ñ =d B dt 0x and á ñ = - á ñd B dt s By x . Thus, if á ñBx

and á ñBy are positive, there will be a decrease in á ñBy and therefore
in á ñ∣ ∣B . Therefore, we initially choose µ +ˆ ˆB x y3.30 , which
guarantees a decrease in á ñ∣ ∣B and a <^ ∣∣p pj j, , anisotropy during
a simulation time ~ -3s 1.

By resolving the x–y plane, our simulations can capture the
quasi-parallel A/IC and FM/W modes, as well as the oblique
OEF and OIF modes with their wavevectors k forming any
angle with the mean magnetic field á ñB . The key parameters in
our simulations are: the particle magnetization, quantified by
the ratio between the initial cyclotron frequency of each species
and the shear rate of the plasma, w sc j, ( =j i e, ), and the ratio
of ion to electron mass, m mi e. In typical astrophysical cases,
w  sc j, and =m m 1836i e . Due to computational constraints,
however, we will use values of w sc j, and m mi e much larger

than unity, but still much smaller than expected in real
environments. This limitation will be taken into account when
applying our simulation results to relevant astrophysical cases.
Our simulations initially have b b= = 2i e (b pº ∣ ∣Bp8j j

2).
In almost all of our runs =k T m c 0.28e eB

2 , which implies
w w = 0.53c e p e, , (where kB, Te, and wp e, are Boltzmann’s
constant, the electron temperature, and the electron plasma
frequency, respectively). We will change our simulation condi-
tions by varying w sc e, and m mi e (which uniquely fix w sc i, and
k T m ci iB

2). Some of our simulations use “infinite mass ions” (the
ions are technically immobile, so they just provide a neutralizing
charge), with the goal of focusing on the electron-scale physics.
These provide a useful contrast with our finite m mi e runs and
allow us to isolate the impact of ion physics on the electrons. The
numerical parameters in our simulations will be Nppc (number of
particles per cell), w Dc p e x, (the electron skin depth in terms of
grid size), L RL i, (box size in terms of the initial ion Larmor radius
for runs with finite m m ;i e w=R vL i i c i, th, , , where =v ith,

k T mi iB ), and L RL e, (box size in terms of the initial electron
Larmor radius for runs with infinite m mi e). Table 1 shows a
summary of our key runs. We ran a series of simulations ensuring
that the numerical parameters (e.g., different Nppc) do not
significantly affect our results. Note that most runs used just for
numerical convergence are not in Table 1.

3. Pressure Anisotropies

In this section we focus on the nonlinear evolution of the ion
and electron pressure anisotropies. As stated above, we will
begin by showing simulations where ions have infinite mass.

3.1. Simulations with = ¥m mi e

Figure 1 shows the early time evolution (until »·t s 1.3) of
the electron pressures perpendicular (p̂ ;e, black solid line) and
parallel ( ∣∣p ;e, red solid line) to B for runs I1 and I2 of Table 1.
These runs have ions of infinite mass so that the electrons can only
be affected by the electron anisotropy-driven OEF and A/IC
instabilities, and their magnetizations are w =s 3600c e, and
7200, respectively. The black dotted and red dotted lines show the
expected evolutions of p̂ e, and ∣∣p e, from the Chew–Goldberger–
Low (CGL) or double adiabatic limit (Chew et al. 1956). We see

Table 1
Physical and Numerical Parameters of the Simulations

Runs m mi e w sc e, k T m ce eB
2 Nppc L RL e,

I1 ¥ 3600 0.28 40 210
I2 ¥ 7200 0.28 40 210
I3 ¥ 7200 0.1 40 210
F1 64 7200 0.28 40 640
F2 25 7200 0.28 40 400
F3 25 3600 0.28 40 400
F4 10 7200 0.28 40 250

Note. The parameters are the mass ratio m mi e, the initial electron
magnetization w sc e, , the ratio between electron temperature and rest mass
energy, kT m ce e

2, the number of particles per cell Nppc (including ions and
electrons), and the box size in units of the typical initial electron Larmor radius
L RL e, ( w=R vL e e c e, th, , , where =v k T me e eth,

2
B , kB is Boltzmann’s constant,

and Te is the electron temperature). All of the runs initially have b b= = 2i e

and = D Dc 0.225 x t , whereDt is the simulation time step. The runs shown in
this Table share the same electron skin depth w D =c 5p e x, (where Dx is the
separation of grid points), but we used several other simulations to confirm
numerical convergence by varying w Dc c e x, , Nppc, and L RL e, .

2
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that this adiabatic limit is reasonably well satisfied in the early
stage of the simulations (until ~·t s 0.7), regardless of the
magnetization w sc e, . After that, the growth of the electron
anisotropy-driven instabilities provides enough pitch-angle scatter-
ing to stop the adiabatic evolution of the electron pressure.

The presence of the OEF and A/IC instabilities can be seen
from Figure 2, which shows the magnetic field fluctuations and
plasma density in simulation I1. The upper row in Figure 2
corresponds to =·t s 1, i.e., after one shear time, while the
lower row corresponds to =·t s 2. At all times the magnetic
fluctuations are dominated by their dBz component, with
wavenumbers k (º∣ ∣k , where k is the wavevector) satisfying

~kR 0.2L e, , and with k being mainly oblique to the mean
direction of B. The presence of these oblique modes can also be
seen from Figure 3(b), which shows the Fourier transform of
dBz at =·t s 1 as a function of the wavenumbers parallel and
perpendicular to á ñB ( ∣∣k and k⊥, respectively). This suggests
that the OEF modes contribute the most to the amplitude of the
magnetic fluctuations. However, although smaller in amplitude,
quasi-parallel A/IC modes can also be seen especially in the
dBx component (see Figure 2(a)). This is also seen from
Figure 3(a), which shows that the Fourier transform of dBx (as a
function of ∣∣k and k⊥) is dominated by quasi-parallel modes.

Figure 4 shows the time evolution of the magnetic energy in
á ñB , the volume-averaged pressure anisotropy, and the electron
magnetic moment for two runs, one with w =s 3600c e, and the
other with w =s 7200c e, (runs I1 and I2 in Table 1,
respectively). Panels (c) and (d) show the volume-averaged
pressure anisotropy -áD ñ á ñ∣∣p pe e, for these two runs, where
D = -^ ∣∣p p pe e e, , . For comparison, in both cases we plot the
anisotropy threshold that would make the OEF and A/IC
modes grow at a rate equal to the shearing rate, s. These
thresholds were calculated using the linear Vlasov solver
developed by Verscharen et al. (2013). The calculations use
mass ratio =m m 1836i e and assume very cold ions
(b = -10i

4), which seeks to resemble our simulated
= ¥m mi e situation where the ions only provide a neutraliz-

ing charge.7 We see that the OEF and A/IC thresholds are quite
similar, although the OEF mode has a slightly lower threshold,

especially in the case w =s 3600c e, . This implies that both
modes should play some role in regulating the electron
anisotropy, with their relative importance depending weakly
on the ratio w sc e, . Also, for both values of w sc e, there is a
reasonably good agreement between the electron anisotropy
obtained from the simulations and the linear OFE and A/IC
instability thresholds. This is thus consistent with the electron
anisotropy being maintained at the level for the OEF and A/IC
modes to grow at a rate close to s.
The contribution of the different components of dB can be

seen from Figures 4(a) and (b), which show the magnetic
energy along different axes as a function of time, normalized
by the average magnetic energy in the simulation, pá ñB 82 . dB
is decomposed in terms of dBz (component perpendicular to the
simulation plane), d ^Bxy, (component parallel to the simulation
plane but perpendicular to á ñB ), and d ∣∣B (component parallel to
á ñB ). Clearly, dB is dominated by its z component (as already
seen in Figure 2). This shows that, although the OEF and A/IC
modes are expected to contribute to limiting the electron
anisotropy, their contribution to the magnetic energy in dB is
quite different. Indeed, our linear calculations show that, for the
plasma parameters of runs I1 and I2, the OEF modes should
satisfy d d d+ ~^∣ ∣ (∣ ∣ ∣ ∣)∣∣B B B 4z xy, . Thus the fact that in our
runs d d~ ^B B10z xy

2
,

2 implies that most of the magnetic energy
is being contributed by the OEF modes. The quasi-parallel
A/IC modes, which are most visible in the dBx component as
can be seen from Figure 2(a), make a significantly smaller
contribution to dB. Another sign of the dominance of the OEF
modes is the growing and damping phases of dBz observed in
Figures 4(a) and (b), which are likely related to the conversion
of the saturated OEF modes into propagating waves that are
rapidly damped through scattering with electrons, as has been
observed in previous initial-value PIC simulations (e.g.
Hellinger et al. 2014). The different contributions to dB are
likely due to the slightly different anisotropy thresholds of the
OEF and A/IC instabilities, as well as to the different
amplitude at saturation expected for these two modes. Another
possible factor is that the growth rate of the A/IC instability is
very sensitive to the orientation of the pitch-angle gradients of
the distribution function. Therefore, the A/IC instability can
relax the distribution faster toward a stable configuration
through pitch-angle scattering than the OEF instability.
Finally, Figures 4(e) and (f) show the volume-averaged

magnetic moment of the electrons, má ñe (ºá ñp̂ B ;e, black solid
line), for the same runs I1 and I2, respectively. It can be seen
that until the onset of the exponential growth of OEF and A/IC
( »·t s 0.7), má ñe is fairly constant, implying the lack of
efficient pitch-angle scattering. After that, má ñe tends to increase
at a rate close to the shear rate s. This implies the appearance of
an effective pitch-angle scattering rate for the electrons, n eeff, ,
due to their interaction with the OEF and A/IC modes.
In order to help us to understand the wayDpj is regulated by

the different velocity-space instabilities, we propose a second
way to calculate the average magnetic moment of species j:

m º
á ñ

á ñ
^ ( )

p

B
. 1j

j
,eff

,

This definition is useful because there can be cases where
m m¹ á ñj j,eff . This is expected when, besides pitch-angle
scattering, Dpj is partly regulated by relatively large fluctua-
tions in B, which may spatially correlate with p̂ j, in a

Figure 1. Initial evolution of the electron pressures perpendicular (p̂ ;e, black
solid) and parallel ( ∣∣p ;e, red solid) to B for runs I1 and I2 in Table 1 (with
w =s 3600c e, and w =s 7200c e, , respectively). The black and red dotted lines
show the expected p̂ e, and ∣∣p e, evolutions from the CGL or double adiabatic
limit (Chew et al. 1956). A significant deviation from adiabatic evolution can
be seen at ·t s 0.7.

7 In order to make sure that using mildly relativistic electrons in our runs
(where =k T m c 0.28e eB

2 ) does not invalidate our comparison with the
calculated thresholds (which assume non-relativistic electrons), we added as a
solid red line in Figure 4(d) the pressure anisotropy for run I3, which uses

=k T m c 0.1e eB
2 (while keeping the same w sc e, and be). The very small

difference between the two cases suggests that the effect of having mildly
relativistic electrons is fairly small.

3
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mj-conserving way. This occurs, for instance, in the presence of
large-amplitude mirror modes (Kunz et al. 2014; Riquelme
et al. 2015, 2016). Figures 4(e) and (f) show that, after má ñe
conservation is broken, me,eff (dotted black) and má ñe (solid
black) are almost indistinguishable. This confirms that Dpe is
regulated by an effective pitch-angle scattering provided by the
OEF and A/IC modes, with no significant contribution from
fluctuations in B.

3.2. Simulations with Finite m mi e

In order to study the effect of ions in regulating both the ion
and electron pressure anisotropies, we now focus on simula-
tions with finite ratios of ion to electron mass, m mi e. Since
using m m 1836i e is computationally infeasible with our
current resources, we have instead tried to ensure that our
simulation results do not depend significantly on m mi e, which
is reasonably well achieved for =m m 25i e and 64.
As an example, Figure 5 shows the three components of dB

for run F1 of Table 1 ( =m m 64i e and w =s 7200c e, ). The
upper and lower rows correspond to =·t s 1 and =·t s 2,
respectively. At both times, quasi-parallel and oblique modes
are present with similar amplitudes, and with wavenumbers
satisfying ~kR 0.4L i, (where RL i, is the ion Larmor radius).
While the quasi-parallel modes are apparent in the three
components of dB, the oblique modes appear mainly in dBz.
This can be seen more clearly from Figure 6, which shows the
Fourier transform of dBx (Figure 6(a)) and dBz (Figure 6(b)) at

=·t s 1 as a function of ∣∣k and k⊥. The presence of quasi-
parallel modes is clear in both panels, while the oblique modes
mainly appear in dBz. These features are consistent with the
simultaneous presence of both OIF and FM/W modes.
The presence or absence of fluctuations on the scale of the

electron Larmor radius is less clear from Figures 5 and 6. We
will come back to this question below.

3.2.1. The Role of m mi e

Figure 7 compares the evolution of the energy in dB, the ion
and electron anisotropies, and mi and me for simulations with
different mass ratios and electron magnetization. The first and

Figure 2. Three components of dB and plasma density fluctuations dr at two different times: =·t s 1 (upper row) and =·t s 2 (lower row), for a simulation with
infinite ion mass (run I1). Fields and density are normalized by the initial magnetic field, B0, and the average density, r0. The arrows in panels (d) and (h) show the
magnetic field direction in the x–y simulation plane. For this = ¥m mi e case, the magnetic fluctuations are dominated by the oblique OEF modes.

Figure 3. Presence of the quasi-parallel A/IC and OEF modes for run I1 is
shown by the magnitude of the Fourier transform of (a) dBx and (b) dBz at

=·t s 1. These quantities are plotted as a function of the wavenumbers parallel
and perpendicular to á ñB ( ∣∣k and k⊥, respectively), are normalized by their
maximum value, and are raised to the power 1/5 to provide better dynamical
range. The contributions from (quasi-parallel) A/IC and (oblique) OEF modes
with wavevectors satisfying ~kR 0.2L e, are most clearly seen from panels (a)
and (b), respectively.

4
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second columns compare simulations with the same electron
conditions (w =s 7200c e, , =k T m c0.28e eB

2, and b b= = 2e i )
but with different mass ratios: =m m 25i e (run F2) and

=m m 64i e (run F1), respectively.
Figures 7(d) and (e) show the volume-averaged electron and

ion pressure anisotropies as a function of time (green and black
lines, respectively) for runs F2 and F1, respectively. These
figures also show the anisotropy threshold for the growth of
different instabilities, using a growth rate of s. As dotted lines
we show thresholds that assume D = Dp pe i and correspond to
the instabilities: OEF (dotted green), OIF (dotted red), and
FM/W (dotted blue). We do not include A/IC thresholds in
this case. This is because our linear calculations show that the
A/IC modes are subject to cyclotron-resonant ion damping
when ~T Ti e, becoming stable in our runs with finite m mi e

(this is true even for =m m 1836i e ).8 We see that our
simulation results are fairly independent of the mass ratio, and
can be summarized as follows:

1. The ion and electron anisotropies evolve quite similarly
in both cases. (This justifies using instability thresholds
that assume D = Dp pi e for comparison.)

2. The obtained electron anisotropy is a factor ∼1.5 smaller
than the expected OEF threshold.

3. The ion and electron anisotropies are best described by
the thresholds of the OIF and FM/W instabilities
with D = Dp pi e.

4. The OIF and FM/W thresholds with D = Dp pi e are quite
similar, which is consistent with the simultaneous presence
of these modes in Figure 5.

The fact that the electron anisotropy is close to the OIF and
FM/W thresholds, and a factor ∼1.5 smaller than the expected
OEF threshold, shows that the OIF and FM/W modes are the
ones with the largest effect on the electron anisotropy. This can
be understood as being due to the significant contribution of the
electron pressure anisotropy to the growth of OIF and FM/W
modes. Indeed, our linear calculations show that the Dpi
thresholds for the OIF and FM/W instabilities with D =p 0e
are a factor of ∼2 larger than in the D = Dp pi e case. This
conclusion is also supported by the fact that, for the obtained
electron anisotropy, the OEF modes are stable, indicating that
the contribution from the OEF modes to the scattering of
electrons is not expected to be important.
Finally, we performed similar linear threshold calculations

for the case =m m 1836i e with w g = 10c e,
6 (where γ

represents the growth rate of the different instabilities), which
are shown in Figure 8(a). We find that the thresholds of the OIF
(dotted red) and FM/W (dotted blue) modes with D = Dp pe i
continue to be similar and smaller than the OEF (dotted green)
threshold by a factor ∼1.5 (the dotted green line almost
coincides with the solid red line). Also, the OIF and FM/W
thresholds with D = Dp pe i are ∼1.5 times smaller than in the
D =p 0e case. This implies that, for realistic mass ratios and
magnetizations, the dominant instability for the regulation of
ion and electron anisotropies should continue to be the OIF and
FM/W instabilities.9

Figures 7(a) and (b) show the magnitude of the volume-
averaged magnetic energy in the same three components of dB
plotted in Figure 4: dBz (solid green), d ∣∣B (solid black), and
d ^Bxy, (solid red), for =m m 25i e and 64, respectively (for
comparison the case =m m 25i e is replicated in Figure 7(b)
using dotted lines). For the two mass ratios, the two
components perpendicular to dá ñB dominate, with dá ñBz

2 being
most of the time ∼3 times larger than dá ñ^Bxy,

2 . This result
implies that the OIF and FM/W modes are contributing
comparable energy to dB, as was also noticeable from Figure 5.
Indeed, our linear calculations show that d d ^B Bz xy

2
,

2 for the

Figure 4. Evolution of different volume-averaged quantities for two simulations
with w =s 3600c e, (run I1; left column) and w =s 7200c e, (run I2; right
column), which use = ¥m mi e (the ions simply provide a neutralizing charge).
Upper row: the volume-averaged magnetic energy components, dá ñBr

2 pointing:
along the z axis (dB ;z

2 green), parallel to á ñB (d ∣∣B ;2 black), and perpendicular to
á ñB but in the x–y plane (d ^B ;xy,

2 red), normalized by á ñB2 . Middle row: the
evolution of the electron pressure anisotropy (green line), with the linear OEF
and A/IC instability thresholds for growth rates g = s (dotted green and dotted
black lines, respectively). The pressure anisotropy saturates at a value roughly
consistent with the linear OEF and A/IC instabilities growing at the rate g = s.
Additionally, panel (d) shows as a solid red line the electron anisotropy for run
I3, with the same parameters as run I2 but with =kT m c 0.1e e

2 instead of 0.28.
The small difference between the solid green and solid red lines shows that the
electrons being mildly relativistic should not substantially affect the evolution of
Dpe. Lower row: the electron magnetic moment; see Equation (1) and associated
discussion for definitions of me (solid) and m eeff, (dotted).

8 The A/IC modes are relevant for the simulations with fixed ions because
these particles behave like very cold ions and cannot damp the A/IC modes.
9 Although the OIF and FM/W thresholds are similar, there is the trend for
the FM/W threshold to be smaller than the OIF threshold at early times
( ·t s 1.8, b 7i ), while the opposite situation happens at late times
( ·t s 1.8, b 7i ). This implies that in the more realistic cases there could be
a clearer dominance of the FM/W (OIF) modes for b 7i (7). This is
consistent with the OIF dominance shown in the hybrid-PIC simulations with
fluid electrons presented by Kunz et al. (2014), which use b ~ 100i and where
the ions are significantly more magnetized than in our simulations.
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OIF modes, while d d~ ^B Bz xy
2

,
2 for the FM/W modes,10 which

implies that most of the d ^Bxy, component is being produced by
FM/W modes.

The amplitudes of the OIF and FM/W modes appear to
depend on the mass ratio. Although time-dependent, the
magnitude of dBz

2 in the case =m m 64i e is on average

∼1.5 times larger than in the case =m m 25i e . Since the
magnetizations w sc i, of the two runs differ by a factor ∼2.6
(=64 25), this is roughly consistent with previous studies of
the OIF instability that show that dB2 at saturation should scale
as d wµ ( )B B s c i

2 2
,

1 2 (Kunz et al. 2014). On the other hand,
d ^Bxy,

2 in the case =m m 64i e is about ∼2 times larger than for
=m m 25i e , which is roughly consistent with the expectation

for the FM/W modes to have a saturation amplitude that
satisfies d wµB B s c i

2 2
, . This scaling can be obtained from the

expected effective ion scattering frequency by resonant waves,
n ieff, , which scales as

n
d w

~ ( )
∣∣ ∣∣

B

B k v
, 2i

c i
eff,

2

2
,

2

where ∣∣k and ∣∣v are the wavevector component and the particle
velocity component parallel to á ñB (Marsch 2006). For the case
of the quasi-parallel FM/W waves, we obtained from the
simulations that ~∣∣k R 0.3L i, , meaning that wµ∣∣ ∣∣k v c i, for
most particles and that n d wµ ( )B Bi c ieff,

2 2
, . Thus, since one

expects n ~ D· ∣∣s p pi i ieff, , at FM/W saturation (see
Equation (4) below), this implies that d wµB B s c i

2 2
, (con-

sidering that the change in D ∣∣p pi i, between the cases
=m m 25i e and 64 is small).

Finally, in panels 7(g) and (h) we compare má ñ = á ñp̂ Bj j,

and m = á ñ á ñp̂ Bj j,eff , for both ions and electrons. We see that
the change in mj,eff tends to be somewhat larger than the one in
má ñj (by~20%) for the two mass ratios tested. This implies that

Figure 5. Three components of dB and plasma density fluctuations dr at two different times: =·t s 1 (upper row) and =·t s 2 (lower row), for run F1 with
=m m 64i e . The fields and density are normalized by B0 and the average density r0, respectively. The arrows in panels (d) and (h) show the magnetic field direction

on the x–y plane. At both times, the magnetic fluctuations are dominated by a combination of the OIF and FW/M, with both modes contributing about the same
energy. The OIF modes are oblique and appear mainly in the dBz component; the FM/W modes are quasi-parallel to á ñB and are apparent in the three axes.

Figure 6. Magnitudes of the Fourier transform of (a) dBx and (b) dBz for run F1
( =m m 64i e ) at =·t s 1, as a function of ∣∣k and k⊥ and normalized by their
maximum value (these quantities are raised to the power 1/5 to provide better
dynamical range). The presence of the (quasi-parallel) FM/W modes with

~kR 0.4L e, is clearly seen in both panels. The presence of the (oblique) OIF
modes is apparent mainly in dBz.

10 Indeed, using the Vlasov solver of Verscharen et al. (2013), one can obtain
that, for the parameters of runs F1 ( =m m 64i e ) and F2 ( =m m 25i e ), the
OIF modes satisfy d d d+ ~^∣ ∣ ( )∣∣B B B 5z xy xy,

2
,

2 1 2 .
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the combined effect of the OIF and FM/W modes reduces p̂ j,
in a way that mainly breaks the adiabatic invariance of mj, with
the preservation of mj due to changes in the field configuration
playing a small role.

3.2.2. The Role of w sc e,

It is also important to understand the role of electron
magnetization, w sc e, , while keeping the same mass ratio. This
can be done by looking at the first and third columns in

Figure 7, which compares simulations with =m m 25i e but
with electron magnetization w =s 7200c e, and 3600 (runs F2
and F3 in Table 1, respectively). We see that the two runs
reproduce essentially the same results in terms of the evolution
of mj and Dpj, with the only difference being in the amplitude
of the magnetic fluctuations. Apart from some significant time
variability, the amplitudes of the components dBz and d ^Bxy, in
the run with =m m 25i e and w =s 3600c e, are quite similar
to the case =m m 64i e , w =s 7200c e, . Since these two runs
have a very similar ratio w sc i, (=144 and 113, respectively),

Figure 7. Time evolution of volume-averaged quantities for simulations with =m m 25i e and w =s 7200c e, (F2; left column), =m m 64i e and w =s 7200c e, (F1;
center column), and =m m 25i e and w =s 3600c e, (F3; right column). The upper row shows the volume-averaged magnetic energy in three components of dB: dBz

(green), d ∣∣B (black), and d ^Bxy, (red), normalized by pB 82 . The middle row shows the ion (black) and electron (green) pressure anisotropies,D ∣∣p pj j, , along with the
anisotropy thresholds for the growth of different instabilities (using a growth rate of s). The dotted lines show thresholds assuming D = Dp pe i, which correspond to
the instabilities: OEF (dotted green), OIF (dotted red), and FM/W (dotted blue). Our results are consistent with the OIF and FM/W modes dominating the pressure
anisotropies of ions and electrons, which satisfyD » Dp pe i. The lower row shows the volume-averaged ion (solid red) and electron (solid black) magnetic moments,
as well as the “effective” averages defined as in Equation (1) for ions (dotted red) and electrons (dotted black), and normalized by the initial value of mj.
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this result is consistent with the dependence of the OIF and
FM/W saturated amplitude on w sc i, mentioned in
Section 3.2.1.

3.2.3. Breaking of me Adiabatic Invariance

An important question is whether the ion-scale instabilities
alone are capable of explaining the break in the electron
magnetic moment shown in Figures 7(g)–(i) (which starts
at ~·t s 0.7).

We explore this issue by comparing the power spectra of the
fluctuations in our finite m mi e runs with the power spectrum
produced in the case with = ¥m mi e . This is done in
Figures 9(a) and (b), where the magnetic energy per
logarithmic unit of ∣∣k and k⊥ is plotted at =·t s 2 for runs
with =m m 10, 25, 64,i e and ¥ (runs F4, F2, F1, and I2,
respectively; ∣∣k and k⊥ are the magnitudes of the wavevector
components parallel and perpendicular to á ñB , respectively).
The electrons in these simulations have the same conditions
( =k T m c 0.28e eB

2 , w =s 7200c e, , and initial b = 2e ), so the
different results are due only to the different m mi e. We
see that:

1. In the cases with finite mass ratio, as m mi e increases, the
peaks of the spectra shift to longer wavelengths (in units
of RL e, ) in a way consistent with the growth of the
ratio R RL i L e, , .

2. In the same way, as m mi e increases, there is a growth in
the amplitude of the peak of the spectra, which accounts
for the expected increase in the amplitude of the OIF and
FM/W modes as w sc i, decreases.

3. The energy of the magnetic fluctuations on scales of
~ ~^ ∣∣k R k R 0.2L e L e, , is quite similar regardless of the

mass ratio used.
4. For finite mass ratios, the power spectra develop, via

power cascade, a tail that behaves as11

d µ -( )∣∣ ∣∣d B d k kln2 2.8 and d µ^ ^
-( )d B d k kln2 2.8.

The similar amplitude of the magnetic fluctuations on
electron scales suggests that the break in the adiabatic
invariance of me can in principle be caused by the OIF and
FM/W instabilities via a scenario of three steps: (i) ion and
electron anisotropies create magnetic fluctuations through the
OIF and FM/W instabilities, (ii) part of the energy in the
magnetic fluctuations is transferred to electron scales via power
cascade, and (iii) electrons are pitch-angle scattered by these
fluctuations, producing the break in me invariance. We can
compare the contributions from the OIF and FM/W modes to
the cascading process by looking at the power spectra by
components: dBz

2, d ∣∣B 2, and d ^Bxy,
2 . This is done in Figures 9(c)

and (d) for the cases =m m 25i e and 64, respectively. These
figures show that dBz

2 and d ^Bxy,
2 are comparable within the

power-law tails. Since dBz
2 and d ^Bxy,

2 are expected to be
dominated by the OIF and FM/W modes, respectively, this
result suggests that these two modes contribute similar amounts
of energy to the power-law tail.

A remaining question is whether the presented scenario is
plausible in the more realistic case with =m m 1836i e , where
a larger scale separation is expected between RL i, and RL e, . We
explore this question using Figure 8(b), where we plot the

growth rate γ as a function of kRL e, for OIF and FM/W modes
(green and black lines, respectively). This is done assuming
b b= = 10i e ,D = Dp pe i, and in two regimes: (i) =m m 64i e
withDpj such that the maximum growth rate g w= 7200c emax ,

(solid lines), and (ii) =m m 1836i e with Dpj such that
g w= 10c emax ,

6 (dotted lines). Since for each value of γ there
are multiple OIF and FM/W wavevectors k, in Figure 9(b) we
chose the maximum and minimum =∣ ∣k k for each γ. In this
way we explore the possibility that the modes with a given γ
could have wavelengths close to both the electron and ion
Larmor radii. We obtained that:

1. In the case with =m m 64i e and g w= 7200c emax , , the
fastest growing OIF and FM/W modes have

 kR0.03 0.06L e, . This range roughly coincides with
the peak of the spectra shown in Figures 9(a) and (b).

2. In the more realistic case with =m m 1836i e and
g w= 10c emax ,

6, the fastest growing OIF and FM/W
modes appear at  kR0.006 0.01L e, . This implies that
both modes have wavelengths a factor ∼6 larger than in
the case with =m m 64i e and g w= 7200c emax , , which
is expected because of the increase by a factor ∼6 in the
ratio R RL i L e, , .

Thus, for =m m 64i e the scale separation between RL i, and
RL e, allows the generation of magnetic fluctuations at electron
scales with enough energy to pitch-angle scatter the electrons.
This result relies on the existence of a power cascade with
d µ -( )d B d k kln2 2.8, which is observed in Figures 9(a)
and (b). However, when =m m 1836i e this scenario seems
less likely. Indeed, at electron scales ( ~kR 0.2L e, ) the cas-
cade of OIF modes can produce an amount of energy
~ ~( )0.2 0.01 44002.8 times smaller than at the ion scales
( ~kR 0.01;L i, see dotted green line in Figure 8(b)). However,
at saturation the OIF and OEF modes are expected to satisfy
d wµ ( )B B s c j

2 2
,

1 2 ( j= i and e, respectively). Thus, in
order to provide enough ion and electron pitch-angle scatt-
ering, the energy at electron scales should be a factor

Figure 8. (a) Calculated pressure anisotropy thresholds for different
instabilities in the case =m m 1836i e and w g = 10c e,

6, using the Vlasov
solver of Verscharen et al. (2013) and assuming the same bj evolution of our
simulations (γ represents the growth rate for the different instabilities). The
cases D = Dp pe i are shown as dotted lines and D =p 0e as solid lines.
The OEF, OIF, and FM/W instabilities are represented by green, red, and blue
colors. For these more realistic parameters, the OIF and FM/W instabilities are
expected to continue to dominate in the regulation of both ion and electron
anisotropies, renderingD » Dp pe i. (b) The growth rate γ as a function of kRL e,

for OIF and FM/W modes (green and black lines, respectively), assuming
b b= = 10i e ,D = Dp pe i. We consider two regimes: (i) =m m 64i e withDpj

such that the maximum growth rate g w= 7200c emax , (solid lines), and
(ii) =m m 1836i e with Dpj such that g w= 10c emax ,

6 (dotted lines). We
choose the maximum and minimum =∣ ∣k k for each γ.

11 This behavior differs from the one obtained from hybrid-PIC simulations
(Kunz et al. 2014), where d µ -( )∣∣ ∣∣d B d k kln2 3.8 and d µ^ ^

-( )d B d k kln2 3.8.
This possibly denotes the influence of the electrons in the cascading process.
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w w~ ~ ~( ) 1836 43c e c i, ,
1 2 1 2 smaller than at ion scales,

which is ∼100 times larger than what can be produced through
the cascade of OIF modes.12

This difficulty may get ameliorated if the power cascade
process were further modified when =m m 1836i e , or if in 3D
the spectral index of the cascade power-law tail were different
from the one obtained in our 2D simulations. Unfortunately,
our current simulations cannot clarify this aspect of the
interplay between the electrons and the OIF and FM/W
instabilities. It is important to point out, however, that in
realistic settings we do not expect the OEF modes to produce
the necessary electron-scale fluctuations either, since our linear
calculations show that these modes are stable for the electron
anisotropy set by the OIF and FM/W instabilities (with
D = Dp pe i). Thus it seems likely that the electron anisotropy
should continue to be determined by the OIF and FM/W
marginal stability condition with D = Dp pe i.

4. Viscous Heating

The existence of electron and ion pressure anisotropies in
general implies the presence of non-diagonal terms in the
pressure tensor, which give rise to an effective viscosity for
both species. In our case, particle velocities are nearly
gyrotropic with respect to á ñB , so the relevant component of
the pressure tensor is µ -^ ( )p p p B B Bxy j j j x y, , ,

2. It can be

shown that this pressure component can tap into the velocity
shear of the plasma, producing an increase in the internal
energy of the particles. In our case, assuming no heat flux, the
internal energy density of species j, Uj (= +^ p p 2j j, , ),
evolves as (Kulsrud 1983; Snyder et al. 1997; Sharma
et al. 2007)

¶

¶
= - D = D ( )

U

t
s p B B B q p , 3

j
j x y j

2

where = -q sB B Bx y
2 corresponds to the growth rate of B. In

the present context, both q andDpj are negative, which implies
an increase in Uj. Before the onset of the instabilities, this
process is adiabatic and therefore it is a reversible energy gain
(in the sense that the increase in Uj would be reversed by
reversing the direction of the plasma shear velocity). Indeed, as
shown in Figures 1(a) and (b) for the case of electrons, the early
evolution of p̂ j, and p j, follows the CGL or double adiabatic

behavior with µp̂ Bj, and µp B1j,
2 (which gives rise to a

net growth of = +^ U p p 2j j j, , since the growth in p j, occurs
faster than the decrease in p̂ j, ). Thus, only after the instabilities
start keepingD p pj j, in a quasi-stationary regime by breaking
mj invariance (after »·t s 0.7 in Figures 1(a) and (b)) can the
increase in Uj be considered as irreversible heating. Also it is
important to point out that the role of the instabilities after

»·t s 0.7 is not the direct heating of the particles by wave–
particle interactions. Instead, the role of the instabilities is to
limit the pressure anisotropy and therefore to regulate the
viscous heating provided by Equation (3).
Figure 10 quantifies the importance of this heating mech-

anism by showing the volume-averaged ion (solid black) and
electron (solid green) heating rates for run F2. We also show
the rate of heating by anisotropic viscosity predicted by
Equation (3) for ions (dotted black) and electrons (dotted
green). For both species there is reasonably good agreement
between the particle heating in the simulation and the
contribution from the anisotropic stress. This shows that
anisotropic viscosity contributes most of the ion and electron
heating in collisionless plasmas (with ~T Te i), both in the case
of decreasing magnetic field presented in this work and in the
regime of growing field shown in Riquelme et al. (2016).

5. Electron Mean Free Path

Besides regulating the effective plasma viscosity, pitch-angle
scattering by velocity-space instabilities is also expected to
limit the mean free path of the particles. To quantify this effect
we used the distance Dj(t) traveled along á ñB by ´2 104 ions
and electrons.13 We calculated their mean free paths assuming
that lá ñ = á ñD tvj j j

2
th, (where lá ñj represents the average mean

free path over species j, while = ( )v k T mj j jth, B
1 2 is their

thermal speed), which is valid if the particles move diffusively.
This allows us to estimate the average mean free path of species
j as l =⟨ ⟩ ( ⟨ ⟩ )/ /d D dt vj j j

2
th, .

Figure 11 shows our estimates of the electron (black) and ion
(red) mean free paths for two simulations with =m m 25i e
and 64 (runs F2 and F1, respectively), normalized by v sjth, .
We see that in both cases there is an initial period when
lá ñ ( )v sj jth, increases as ~ ·t s2 , which is consistent with the

Figure 9. (a) Magnetic energy per logarithmic interval of ∣∣k is plotted at
=·t s 2 for runs with =m m 10, 25, 64,i e and ¥ (runs F4, F2, F1, and I2,

respectively; ∣∣k is the magnitude of the wavevector component parallel to á ñB .
(b) The same as in panel (a) but for k⊥. (c) The power spectra for run F2
( =m m 25i e ) by components: dBz

2, d ∣∣B 2, and d ^Bxy,
2 , and in terms of k

( = + ^∣∣k k k2 2 2). (d) The same as in panel (c) but for run F1 ( =m m 64i e ).

12 We did not include in this analysis the possible cascade of FM/W waves
since, for realistic values of ws c i, , their amplitude dB B2 2 ( wµs c i, ) should be
much smaller than that of the OIF modes (d wµ ( )B B s c j

2 2
,

1 2). Also, we did
not include the possibility of electron scattering via cyclotron resonances (for
which d wµB B s c e

2 2
, ), since we do not expect the cascade of OIF or FM/W

modes to produce waves with the right polarization to resonate with electrons.
13

òº ⋅( ) /v BD t B dtj
t

j0
, where vj is the particle’s velocity.
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free-streaming behavior á ñ »D tvj jth, . This is followed by the
saturation of lá ñj , expected to start after a time of the order of
the collision time of particles. The behaviors of lá ñe and lá ñi at
this stage are quite similar, with lá ñ ( )v se eth, being somewhat
smaller than lá ñ ( )v si ith, (by a factor ∼1.5).

The evolutions of lá ñj seen in Figure 11 are expected to be
influenced by the pitch-angle scattering of the particles caused
by the velocity-space instabilities. In Riquelme et al. (2016) we
estimated this effect assuming an incompressible fluid with no
heat flux, where the scattering produced by the instabilities on
species j was incorporated using an effective scattering rate
n jeff, (Kulsrud 1983; Snyder et al. 1997). In this model, valid for
D ∣∣p p 1j j, , lá ñj behaves as

l
n

á ñ » »
D

( )
∣∣

v v

q

p

p
0.3 . 4j

j

j

j j

j

th,

eff,

th,

,

Equation (4) provides a good approximation to the mean free
path of particles in the case of growing magnetic fields
(Riquelme et al. 2016), where lá ñj is regulated by the whistler
and mirror instabilities. In the cases of decreasing magnetic field,
however, this is not the case. Using our measurements of
D ∣∣p pj j, for runs F2 and F1 (see Figures 7(d) and (e)) one
obtains that, at =·t s 1.5, lá ñ » v s0.15j jth, . However,
Figure 11 shows that the average mean free paths of ions and
electrons are ∼10 times larger than this simple estimate. On the
other hand, considering the evolution of D ∣∣p pj j, and B B Bx y

2

(needed to determine q) from =·t s 1.5 to =·t s 3, lá ñi should
decrease by a factor ∼2, which is essentially what Figure 11
shows. Thus, putting aside the factor ∼10 difference, the scaling
of lá ñj onD ∣∣p pj j, and q presented in Equation (4) is reasonably
well reproduced by the simulations with decreasing B.

The factor ∼10 discrepancy is interesting, partly because
the behavior of n jeff, suggested by Equation (4) (n »jeff,

D∣∣qp p3 j j, ) is well reproduced in the case of ions in previous

hybrid-PIC simulations that studied the saturated state of the
firehose and mirror instabilities (Kunz et al. 2014). In that
case, however, n ieff, is not measured using Di. Instead, they
constructed a distribution of the times taken by each ion to
change its mi by a factor of e, and then approximated n-

ieff,
1 by

the width of the distribution. Thus, in order to clarify this
discrepancy, we compared two different measurements of the
electron mean free path from run F1, one using the variations
of me (we will refer to this estimate as lá ñme, ) and the other one
using De ( lá ñe ). These measurements of lá ñe and lá ñme, are not
defined for different times (as in Figure 11), but they
correspond to averages between =·t s 1 and 3.14 The
comparison was made for different groups of electrons,
defined by the parameter º á ñ á ñ^ A v ve e e,

2
,
2 , where áñ

represents the average between =·t s 1 and 3 for each
electron. We use Ae as a way to quantify the pitch angle of
electrons, which, as we will see below, affects the behaviors
of lá ñe and lá ñme, in different ways.
Our results are shown in Figure 12(a). We see that lá ñe and

lá ñme, roughly coincide for A 1e (pitch angle  45 ).
However, for A 1e (pitch angle  45 ), lá ñe becomes
significantly larger than lá ñme, . This is consistent with the fact
that, for electrons with small pitch angle, a variation in v̂ e,

2 of
order unity due to scattering (which implies a variation in me of
order unity) does not imply that they reverse their velocity
along B. Also, when averaged over the entire Ae distribution
(shown by the black line in Figure 12(a)), lá ñe is a factor ∼10
larger than lá ñme, , showing that using lá ñme, would essentially

Figure 10. Volume-averaged ion (solid black) and electron (solid green)
heating rates for run F2. The rates of heating by anisotropic viscosity predicted
by Equation (3) for ions and electrons are shown with the dotted black and
dotted green lines, respectively. All quantities are normalized by p s0 , where p0
is the initial particle pressure in the simulation. For both species there is
reasonably good agreement between the particle heating in the simulation and
the contribution from the anisotropic stress.

Figure 11. Electron (black) and ion (red) mean free paths (normalized by v sjth, ),
calculated via the time derivative of the mean squared distance traveled by particles
along á ñB ( l =⟨ ⟩ ( ⟨ ⟩ )/ /d D dt vj j j

2
th, ). Results correspond to runs with

=m m 64i e (dotted lines; run F1) and =m m 25i e (solid lines; run F2). At
early times the particles stream freely, á ñ µd D dt tj

2 . After the velocity-space
instabilities saturate, pitch-angle scattering leads to saturation of the mean free path.

14 For a given electron population, lá ñe is estimated by first calculating for
each electron the quantity l = = - = á ñD( ( · ) ( · ) ) ( ∣ ∣ )∣∣D t s D t s v t3 1e e

2 2
,

(whereDt is simply the time elapsed between =·t s 1 and 3 and á ñ∣ ∣∣∣v e, is the
average magnitude of the electron velocity parallel to B in the same period),
and then taking the average over the population. For lá ñme, , we construct a
distribution of the times taken by each electron to change me by a factor e with
respect to its value at =·t s 1, and then lá ñme, is estimated by multiplying the
width of the distribution by v eth, .
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eliminate the discrepancy between our estimated mean free
path and Equation (4).15

Given this difference between lá ñme, and lá ñe , it is important to
understand why, in the case of growing magnetic field studied by
Riquelme et al. (2016), the behavior of lá ñe is well reproduced by
Equation (4). Figure 12(b) shows the same quantities as
Figure 12(a) but for run MW1 of Riquelme et al. (2016). We
see that the trend for lá ñe to grow relative to lá ñme, as Ae decreases
is maintained in this case. However, for all values of Ae, the case
of growing B tends to have a smaller ratio l lá ñ á ñme e, than the
case of decreasing B, making l lá ñ ~ á ñme e, if the average over
the whole distribution of Ae (black line) is considered.

This difference between the cases of growing and decreasing
B appears to be due to the specific effect of the relevant
instabilities on the electron velocities. This is suggested by
Figure 13(a), which shows the electron velocity distribution

^( )∣∣
( )f v v,e e
z

, , for run F1 at =·t s 1.5 (corresponding to the
saturated stage of the FM/W and OIF instabilities), where ∣∣v e,

and ^
( )v e
z
, are respectively the electron velocity parallel to á ñB and

parallel to the z axis (which are mutually perpendicular). We
see that, for v c0.6e ( º + ^( )∣∣

( )v v ve e e
z

,
2

,
2 1 2), ^( )∣∣

( )f v v,e e
z

, , is
dominated by electrons with rather small pitch angle ( 45 ).
This suggests that for v c0.6e , the scattering process occurs
in a way that disfavors the diffusion of electrons toward smaller
values of ∣ ∣∣∣v e, , which in turn precludes the reversal of ∣∣v e, ,
contributing to increasing lá ñe . For comparison, in Figure 13(b)
we show the analogous electron distribution for run MW1 of
Riquelme et al. (2016) (growing B) at =·t s 1.5, where

^( )∣∣
( )f v v,e e
z

, , appears more similar to a bi-Maxwellian distribu-
tion with >^ ∣∣p pe e, , . Notice that the dominance of electrons
with small pitch angle for v c0.6e seen in the case of
decreasing field is similar to the modification to the ion velocity
distribution found by previous hybrid-PIC simulations of an
expanding box, where the ion scattering is also provided by the

FM/W and OIF instabilities (Matteini et al. 2006; Hellinger &
Travnicek 2008).
In summary, for both growing and decreasing B, the estimate

of the electron mean free path provided by Equation (4) is fairly
well reproduced by lá ñme, (as was shown by Kunz et al. 2014 in
the case of ions). However, since lá ñe is based on the direct
calculation of the distance travelled by the electrons along B,
this quantity provides a more meaningful measurement of the
electron mean free path for the purpose of quantifying the
thermal conductivity of the plasma. In the case of decreasing
field, lá ñe is a factor ∼10 larger than lá ñme, , most likely due to
the specific electron scattering mechanism provided by the
FW/W and OIF instabilities. Thus, in this case the electron
mean free path is best described by the relation

lá ñ »
D

( )
∣∣

v

q

p

p
3 , 5j

j j

j

th,

,

which is valid for  b2 20e , and only differs from
Equation (4) by its prefactor ∼3 instead of ∼0.3.

6. Discussion and Implications

We used PIC plasma simulations to study the nonlinear,
saturated stage of various ion and electron velocity-space
instabilities relevant for collisionless plasmas. We focused on
instabilities driven by pressure anisotropy with <^ ∣∣p pj j, , . To
capture the nonlinear regime in a self-consistent way, we
imposed a shear velocity in the plasma, which decreases
the background magnetic field. This drives <^ ∣∣p pj j, , due to
the adiabatic invariance of the magnetic moment (the driv-
ing timescale is much longer than the gyroperiod of the
particles). This, in turn, drives velocity-space instabilities,
which inhibit the growth of pressure anisotropy. The relevant
instabilities in this regime, as suggested by linear theory, are
(i) the purely growing OIF and the resonant FM/W modes,
which are mainly driven by the ions, and (ii) the purely
growing OEF and the resonant A/IC modes, which are driven
by the electrons. The nonlinear state of these instabilities is
expected to be influenced by the simultaneous presence of ion
and electron anisotropies on the different modes. In order to
achieve reasonable scale separation between these modes, we

Figure 12. Comparison of two different ways to measure the electron mean
free path for the simulations F1 of this paper (panel (a), with decreasing B)
and MW1 of Riquelme et al. (2016) (panel (b), with growing B), between

=·t s 1 and 3. One way is based on the distance De travelled by the
electrons along B, lá ñe (red), and the other is based on the change in me,
lá ñme, (green). (See footnote 14 for details on the calculation of lá ñe and
lá ñme, .) The mean free paths are plotted as a function of º á ñ á ñ^ A v ve e e,

2
,
2 ,

where áñ represents the time average between =·t s 1 and 3 for each
electron. In panels (a) and (b), the black lines show the respective
distributions of Ae, A dN dAe e.

Figure 13. Electron velocity distribution ^( )∣∣
( )f v v,e e
z

, , at =·t s 1.5 for (a) run
F1 (decreasing B) and (b) run MW1 (growing B; Riquelme et al. 2016) ( ∣∣v e,

and ^
( )v e
z
, are respectively the electron velocity parallel to á ñB and that parallel to

the z axis, which are mutually perpendicular). Run F1 shows that, for v c0.6e

( º + ^( )∣∣
( )v v ve e e
z

,
2

,
2 1 2), the distribution is dominated by electrons with small

pitch angle, while in run MW1 the velocity distribution appears more similar to
a bi-Maxwellian distribution with >^ ∣∣p pe e, , .

15 The factor ∼10 difference between our measured lá ñe and the estimate
given by Equation (4) was also obtained in simulations with ions of infinite
mass, where the electron scattering is dominated by the OEF modes. Also, the
same difference is obtained in simulations with ions of infinite mass and initial
b = 5e , suggesting that this discrepancy is fairly insensitive to be, at least in the
regime of moderate be that we studied.
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mainly used =m m 25i e and 64. Our results, valid for the
regime  b b»2 20i e , showed no significant difference
between these two mass ratios.

We found that the mechanism for regulating the ion and
electron anisotropies consists in the growth of OIF and FM/W
modes, which affect the ions and electrons equally, rendering
D » Dp pe i. The numerically obtained ion and electron
anisotropies are well approximated by the linear threshold for
the growth of the OIF and FM/W modes with D = Dp pe i and
with growth rate ~s. The electron pressure anisotropy in
simulations with ions of infinite mass (where the ions only
provide a neutralizing charge) is dominated by the OEF and
A/IC modes, giving an anisotropy a factor ∼2 larger than in
the cases with finite m mi e. We attribute this result to the rather
strong destabilizing effect of the electron pressure anisotropy,
Dpe, on the OIF and FM/W modes (as already suggested by
previous linear dispersion analyses, see Michno et al. 2014;
Maneva et al. 2016), which in turn maintains Dpe at a value
significantly lower than the one necessary to make the OEF and
A/IC modes grow at a rate ~s.

Although the amplitude of the OIF and FM/W modes depends
on the ratio w sc i, , the values of the parameters m mi e and w sc e,
used in the simulations do not affect our conclusions. Also, based
on our linear Vlasov calculations (Verscharen et al. 2013), we infer
that the presented scenario should hold in the highly magnetized
(w s 1c i, ) case with mi/me = 1836 relevant for real astro-
physical plasmas. However, an important point that our simula-
tions could not completely clarify (due to the lack of sufficient
separation of ion and electron scales) is the mechanism by which
the electrons would be pitch-angle scattered in the saturated stage
of the OIF and FM/W instabilities in the case of =m m 1836i e .
Answering this question requires using significantly larger mass
ratios and magnetizations (and possibly 3D runs), so we defer this
aspect of the study to a future work.

We have also used our simulations to verify the expected
viscous heating of particles, which is described in Equation (3),
and arises due to pressure anisotropies tapping into the free
energy in the shear motion of the plasma. Figure 10 shows
good agreement between the heating of the particles in our
simulations and the expectation from Equation (3). This result
is valid for decreasing magnetic fields, as shown here, and for
growing fields, as shown by Riquelme et al. (2016).

With the intention of quantifying the thermal conductivity in
these plasmas, we have also computed the mean free path of
species j, lá ñj , during the nonlinear stage of the OIF and FM/W
instabilities. The average mean free path of both ions and
electrons is reasonably well described by Equation (5). The
scaling factors in this equation are the same as in Equation (4),
which is based on a model where the mean free path of species
j is determined by an effective scattering rate n jeff, that sets the
rate at which the invariance of mj is broken (Kulsrud 1983;
Snyder et al. 1997). However, the prefactor in Equation (5) is
∼10 times larger than in the case of Equation (4).

We explained this discrepancy for the case of the electrons
by noticing that the variation of me provides a good estimate of
lá ñe only for electrons with relatively large pitch angle ( 45 ).
For electrons with pitch angles smaller than ~ 45 , lá ñe can
become a factor ∼10 larger. This is in contrast with the case of
growing B (Riquelme et al. 2016), where Equation (4) provides
a reasonably good estimate for lá ñj , despite the fact that lá ñj
also grows as the pitch angle decreases. This difference is likely
due to the specific electron scattering mechanism provided by

the FW/W and OIF instabilities, which tends to preclude the
reversal of ∣∣v e, , contributing to the increase in lá ñe .
The results shown in this work, as well as those presented in

Riquelme et al. (2016) for the case of growing B, are relevant
for quantifying the viscous heating and thermal conductivity in
various low-collisionality astrophysical plasmas, including
low-luminosity accretion flows around compact objects, the
ICM, and the heliosphere.
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