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Abstract Hot and tenuous plasmas have velocity distribution functions (VDFs) significantly different from
Maxwellian distributions. Characterizing how these differences impact wave damping and emission
necessitates sophisticated methods for determining the associated dielectric plasma response. The Arbitrary
Linear Plasma Solver (ALPS) is a tool for calculating such responses through numerical integration of arbitrary
gyrotropic VDFs, rather than using analytical models, for example bi‐Maxwellians, for the VDF. We consider
dispersion relations for beam‐driven instabilities, proton‐cyclotron waves, and kinetic Alfven waves, derived
using example VDFs from Parker Solar Probe/SPANi measurements during Encounters 22 and 23. The same
kinds of waves are supported, but non‐Maxwellian structures drive significant changes in the amount of energy
absorbed by the charged particles or released into the waves, altering expected heating rates from these waves in
the inner heliosphere.

Plain Language Summary Hot, ionized gases, also known as plasmas, often do not experience
enough collisions for them to be in thermal equilibrium. The non‐equilibrium structures in the distribution of
particle velocities in such systems change the collective behavior of waves. We consider examples of these
changes using measurements from one of the plasma instruments on Parker Solar Probe, which measures the
solar wind as close as 7 million kilometers from the Sun's surface, where non‐equilibrium velocity structures are
frequently observed. Sometimes these structures allow waves to propagate further before damping or change
how energy from the damping is distributed between charged particle populations. In other examples, the non‐
equilibrium structures enhance the emission of waves. Our findings highlight the importance of sophisticated
analyses of heating and instabilities in hot plasma systems in our solar system and throughout the universe.

1. Introduction
Plasma waves are a collective response of collections of charged particles. They transport mass, momentum, and
energy, making them important for plasma system dynamics. Ion‐ and electron‐scale waves are ubiquitously
observed in many parts of the heliosphere, including the near‐Sun environment (Bowen et al., 2020; Colomban
et al., 2025; Liu et al., 2023; McManus et al., 2024), where they are hypothesized to contribute to the heating,
acceleration, and evolution of the charged particle velocity distributions (VDFs) (Berčič et al., 2021; Colomban
et al., 2024; Shankarappa et al., 2024).

Non‐Maxwellian VDFs, frequently seen in weakly collisional plasmas such as the solar wind (Marsch, 2006;
Verscharen et al., 2019), change the collective response of plasma systems. Most plasma wave studies as-
sume a particular analytical model for the background plasma VDF, for example bi‐Maxwellians [WHAMP
(Roennmark, 1982), NHDS (Verscharen & Chandran, 2018), PLUME (Klein et al., 2025), and BO (Xie, 2019)]
or κ‐distributions [DSHARK (Astfalk et al., 2015)]. Motivated by observed departures from Maxwellianity at
closer distances to the Sun (Verniero et al., 2022; T. A. Bowen et al., 2024) and predictions of deformed
VDFs in marginally stable states (Isenberg, 2012), we characterize the impact of non‐Maxwellian VDFs
observed by Parker Solar Probe (Fox et al., 2015; Raouafi et al., 2023) on ion‐scale waves.

To quantify the impact of non‐Maxwellian VDFs on the plasma response, we use the numerical dispersion solver
ALPS (Klein & Verscharen, 2025; Verscharen et al., 2018). Instead of assuming a particular analytical form for
the background VDF, ALPS numerically integrates an arbitrary, gyrotropic input VDF, determining the complex
dispersion relations and thus the solutions to the linear Vlasov–Maxwell theory it supports. There are notable
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changes in the damping and growth rates driven by VDF structures compared to best‐fit, multi‐component, bi‐
Maxwellian models. These changes alter how much energy waves deposit onto or remove from charged parti-
cles, necessitating the reëvaluation of heating models based upon bi‐Maxwellian assumptions. Such changes have
been seen when ALPS has been applied to numerical simulations (Fitzmaurice et al., 2025; Zhang et al., 2025) and
in situ observations from Wind and MMS (Jiang et al., 2022, 2024; Walters et al., 2023). ALPS has not been
applied to diagnose the impacts of non‐Maxwellian structure on the generation and absorption of the cornucopia
of waves seen in the inner heliosphere, and the resulting impact on solar wind heating and acceleration.

Section 2 describes our processing of SPANi data to produce gyrotropic VDFs on regular grids appropriate for
numerical integration, with technical details found in the Supporting Information S1 appendix. Section 3 provides
an overview of dispersion relations calculated from ALPS. Section 4 derives dispersion relations for both
observed and bi‐Maxwellian models for three case studies of different ion‐scale waves germane to the inner
heliosphere. Section 5 quantifies the impact of instrumental uncertainty on the derived dispersion relations, with
concluding remarks in Section 6.

2. Producing Uniform, Gyrotropic VDFs From SPANi Observations
To determine the linear plasma response, we first convert measurements from SPANi (Livi et al., 2022), part of
the SWEAP thermal plasma suite (Kasper et al., 2016) onboard Parker Solar Probe (PSP), into a data structure
digestible by ALPS. We use L2 data, focusing on three accumulation intervals that are representative of typical
conditions seen in the near‐Sun solar wind; selected to highlight changes in beam‐driven instabilities (2024‐12‐
24:14:08:23), proton‐cyclotron wave (PCW) absorption (2025‐03‐21:13:48:59), and kinetic Alfvén wave (KAW)
damping (2025‐03‐22:02:19:00). Details on the characteristics of these intervals can be found in Section S1 of
Supporting Information S1.

ALPS reads in a uniform, Cartesian grid of phase space densities as a function of v⊥/vA and v‖/vA, where the
velocity coördinates are normalized to the proton Alfvén velocity vA = B/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πnpmp

√
, np and mp are the proton

density and mass, and B is the background magnetic field measured by the FIELDS magnetometer (Bale
et al., 2016). The components v⊥ and v‖ of the particle velocity are taken in the directions perpendicular and
parallel to B. Details of the processing of the ALPS input grids from the SPANi measurements are discussed in
Section S2 in Supporting Information S1.

If fp is not resolved out to several thermal velocities, the derived plasma response is susceptible to discontinuities
as resonant velocities pass over the edge of the measured VDF. To ensure coverage, we extrapolate the VDF out to
sufficiently large velocities by adding a collar to the VDF. We fit log10 [fp ( v⊥,v‖)] to both single and two‐
component bi‐Maxwellian models, producing the fitted distribution f fitp . Using the component model with the
lower residual error, see Table S2 in Supporting Information S1, we evaluate f fitp along 10 uniformly spaced rings
in ( v⊥,v‖) with radii ranging from the largest measured velocity vmax/vA to vmax/vA + 1, illustrated in Figure S2c
Supporting Information S1.

Combining the collar and observed VDF, we perform a thin‐plate spline interpolation (Donato & Belongie, 2002;
Powell, 1994; Verscharen et al., 2018; Wood, 2003), creating a regular grid in ( v⊥,v‖)/vA, green contours in the
top rows of Figures 2–4, producing the observed model. We evaluate the best fit bi‐Maxwellian model using f fitp ,
which can have one or two components, on the same regular grid, shown as purple contours. We treat the electrons
as an isotropic Maxwellian background VDF with the same temperature as the protons and appropriate density
and drift speed to enforce quasineutrality and zero net current using an analytic bi‐Maxwellian susceptibility
tensor; see Klein and Verscharen (2025); Appendix B.

3. Calculating Dispersion Relations for Arbitrary Gyrotropic VDFs
The Arbitrary Linear Plasma Solver (ALPS) solves the linear Vlasov–Maxwell dispersion relation for a hot,
magnetized plasma (Klein & Verscharen, 2025; Verscharen et al., 2018), allowing for any number of particle
species with arbitrary gyrotropic background VDFs supporting normal modes with any direction of propagation
with respect to the background magnetic field B. ALPS numerically integrates over the appropriate functions of
velocity gradients of the background VDFs that comprise the plasma wave equation rather than assuming a bi‐
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Maxwellian shape; the full set of equations solved are listed by Verscharen et al. (2018). After calculating
complex dispersion relations in the formω(k) = ωr(k) + iγ(k), whereω is the complex wave frequency, k is the
wavevector, and ωr and γ are the real and imaginary parts of ω, ALPS determines the associated eigenfunctions of
density and velocity fluctuations and electromagnetic fields. ALPS further calculates the damping rate onto each
component j, γj/|ωr|, following Quataert (1998) and Klein et al. (2020).

To identify what parts of fp (v⊥,v‖) contribute to a wave's behavior, we apply quasilinear theory (Kennel &
Petschek, 1966; Verscharen & Chandran, 2013). The resonant coupling between wave and VDF can be modeled
by applying the operator

G ≡ (1 −
k‖v‖
ωr
)

∂
∂v⊥

+
k‖v⊥

ωr

∂
∂v‖

(1)

to fp ( v⊥,v‖). We highlight the regions of the VDF driving wave growth and damping as a function of scale by
constructing functions that depend on the wavevector components k‖ or k⊥, applying G to fp across v⊥ at the
resonant parallel velocity associated with each wavevector,

Figure 1. Calculation of wavevector‐dependent quasilinear emission or absorption G{fp[vres‖ ( k‖),v⊥]} for the backward
parallel propagating PCW for 2024‐12‐24 14:08:23, highlighting resonant behavior at k‖dp = 1.5 and 2.015 (thin and thick
dashed lines) for the bi‐Maxwellian and Observed models (purple and green). (a) Real frequency ωr and damping rates γ.
(b) Resonant velocity vres‖ . (c) Contours of VDF models overlaid with vres‖ for the selected k‖dp. Dashed lines indicate resonant
velocities associated with selected wavevectors. Arrows indicate tangents to circles centered at ωr/k‖ and brown highlights v⊥

ranges where particles lose energy, which is gained by the electromagnetic wave. (d) G(v⊥/vA) evaluated at the two selected k‖dp

values for both models, with G> 0 (G< 0) signifying wave emission (absorption).
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vres‖ (k)
vA

=
ωr(k)/Ωp − n

k‖dp
, (2)

where dp is the proton inertial length. The resonant integer n determines the order of the relevant resonance, which
is related to the polarization of the wave. For waves with purely left‐handed (right‐handed) circular polarization,
only the resonance with n = +1 (n = − 1) is accessible. The Landau resonance acts through n = 0.

As an example, for a backwards parallel propagating proton cyclotron wave associated with interval 2024‐12‐24
14:08:23, we determine ωr ( k‖) and γ(k‖) for both the bi‐Maxwellian and Observed models and the associated
resonant velocity, Equation 2, shown in Figures 1a and 1b. To highlight the parts of fp ( v⊥,v‖) that transfer energy
to or draw energy from the wave, we select two wavevectors, k‖dp = 1.5 and 2.015. The resonant velocity for
these wavevectors are shown as vertical lines on top of contours of constant fp ( v⊥,v‖) for the two models in
Figure 1c. For a given vres‖ , particles are scattered tangent to semi‐circles in velocity space with origins centered at
the parallel phase velocity of the wave, ( v⊥,v‖) = (0,ωr/k‖). If the particles are scattered to higher kinetic energy,
the wave loses energy. If the particles are scattered to lower kinetic energy, shown with brown highlighting in
Figure 1c, the wave gains energy.

The amount of energy gained or lost is proportional to G{fp[vres‖ ( k‖),v⊥]}, shown for the selected wavevectors for
both models in Figure 1d. In the bi‐Maxwellian model, the wave absorbs energy at all v⊥, while there is emission
for select ranges of v⊥ from the Observed model. The overall damping or growth of the wave is determined by
integrating over v⊥; by comparing models as a function of velocity, we determine which parts of the distribution
are changing the linear response of the plasma. In Figures 2–4, panels f and g, we expand this calculation to a
range of wavevectors.

4. Impacts on Plasma Wave Response
We consider three ion‐scale wave types for three SPANi intervals, specifically kinetic Alfvén waves (KAWs,
Section 4.1), proton‐cyclotron waves (PCWs, Section 4.2), and fast mode/whistlers (FMWs, Section 4.3). We
describe forward and backward propagating waves as those moving along or against the local magnetic field
direction.

4.1. Reduction of Kinetic Alfvén Wave Damping

KAWs are the extension of the Alfvén dispersion surface with k⊥ρp ≳ 1 and k‖dp ≪ 1, where ρp is the thermal
proton gyroradius. Since this mode mediates the Alfvénic turbulent cascade at ion scales (Drake et al., 2013;
Howes & Nielson, 2013; Schekochihin et al., 2009), KAW damping rates are used to estimate the deposition of
energy onto the protons and the overall partition of energy between protons and electrons in a variety of astro-
physical contexts (Gorman & Klein, 2024; Howes, 2010; Quataert, 1998; Shankarappa et al., 2023; TenBarge &
Howes, 2013).

To discern impacts of VDF structure on KAW damping, we consider interval 2025‐03‐21 13:48:59, processed
into ALPS format in the top row of Figure 2, with bulk parameters listed in Table S1 of Supporting Informa-
tion S1. The VDF has a clear secondary population extending beyond v‖ ∼ − 2vA, with broadening similar to
observed “hammerhead” structures (Verniero et al., 2020, 2022). We follow the Alfvénic solution holding
k‖dp = 10− 3 constant and varying k⊥dp ∈ [10− 2, 4].

The KAW solutions have qualitatively identical ωr for the two models, visually overlapping for the backwards
solution in Figure 2, while the damping rates γ differ. Resonant wavevectors where the bi‐Maxwellian and
Observed models' dispersion relations show significant differences are bounded by brown lines in Figure 2. For
the backwards KAW, the observed model's total damping rate is reduced to ≈ 80% of the bi‐Maxwellian model at
k⊥ρp ≪ 1. At proton kinetic scales, k⊥dp ≳ 1, the proton damping γp increases by a factor of three compared to the
bi‐Maxwellian model. For the forwards KAW, γp at MHD scales is slightly larger for the observed model than
then bi‐Maxwellian model. At k⊥dp ∼ 1, the protons in the observed model release rather than absorb energy,
leading to a reduction of the total damping rate for the observed model by 50% compared to the bi‐Maxwellian

Geophysical Research Letters 10.1029/2025GL118809
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model. As the predicted electron damping is a higher amplitude, the KAW does not become unstable; the total
Observed damping rate is reduced to 50% of the bi‐Maxwellian model.

To discern the difference between the bi‐Maxwellian and observed models, we first note the small difference in
the amplitude of the fluctuating parallel electric field driving the Landau damping, |Ez|/|E|, which is slightly
larger in the bi‐Maxwellian model for the backwards KAW and in the observed model for the forwards KAW. The
resonant velocities vres‖ (k⊥) for n = 0 are nearly identical for the two models, given they have nearly iden-
tical ωr (k⊥).

Figure 2. Backward (left) and forward (right) KAW dispersion relations as a function of k⊥dp for interval 2025‐03‐21 13:48:59. (Top) Contours of observed (green lines)
and bi‐Maxwellian (purple) VDF models, and underlying observed points (solid dots) and constructed collar (open). Regions of n = 0 resonance, Equation 2, are
indicated by shading. (a) Real frequency ωr/Ωp, (b) total damping/growth rate γ/|ωr| and proton contribution to the damping/growth rate γp/|ωr|, (c) damping rate ratio
γObsp /γbi ‐Max

p , (d) relative amplitude of the parallel electric field |Ez|/|E|. (e) Resonant velocity for the Landau resonance, Equation 2; grey shading indicates the region of
resolved v‖/vA for the VDF models. (f, g) Quasilinear operator G{fp[vres‖ (k⊥),v⊥]} applied to the two models indicating wave absorption (blue) or emission (red). The brown
dashed lines bound velocity‐wavevector regions associated with significant differences between the models' dispersion relations.
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More significant differences can be seen in the evaluation of G{fp[vres‖ ( k‖),v⊥]}, which characterizes which part of

the VDF releases or absorbs energy. These regions of (k⊥dp,v⊥/vA) and ( v‖,v⊥)/vA that correspond to the ranges
of k⊥dp with significant differences between the solutions are enclosed in brown bounding boxes in Figure 2. At
k⊥dp ≪ 1, both models have similar G[fp] structure, entirely absorbing wave energy and mostly confined to
v⊥ ≲ vA. Approaching k⊥dp ≳ 1, the emission and absorption structure changes for the observed model.

For the backwards KAW, particles from the observed model with v⊥ < vA continue to absorb, contrasting with a
lack of absorbing structure for the bi‐Maxwellian case, while for a limited range of wavevectors, particles with
v⊥ ≳ vA release some energy. The net effect is an increase of the proton contribution to the damping rate between
k⊥dp ∈ [1,3], peaking at γObsp = 3γbi ‐Max

p at k⊥dp ≈ 2.5. This different response is due to differences in the VDF
structure at v‖/vA ∼ − 1 and v⊥ ∈ [0,2]vA, where a dense secondary proton population increases the proton
damping rate for the observed model at k⊥dp ∼ 1.

Figure 3. Backward (left) and forward (right) PCW dispersion relations for interval 2024‐12‐24 14:08:23. Organized as Figure 2, but as a function of varying k‖dp with
constant k⊥dp = 10− 3, and regions of n = ±1 resonance, Equation 2, are indicated by shading. The fifth row replaces |Ez|/|E| with polarization P, Equation 3.
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For the forwards KAW, the particles releasing energy for the observed model are those at v⊥ < vA, whose
contribution leads to an overall emission of energy from the protons for the observed model. The observed VDF
structure responsible is a sharp velocity gradient at ( v‖,v⊥)/vA ∼ (1.25,0.5), indicated with the brown dashed
lines in the top row of Figure 2.

The structures driving significant changes from the bi‐Maxwellian model arise at v‖ ≈ vA, which serves as an
indirect sign of quasilinear flattening of the VDF due to Landau damping near vres‖ for n = 0. Such signatures,
previously seen further from the Sun, for example Marsch (2006), He et al. (2015), are generally expected to lead
to a reduction of the proton damping rate, altering the partition of energy between the particle species, both in the
inner heliosphere and in other systems of weakly collisional Alfvénic turbulence, impacting predictive models for
Qj as a function of plasma and bulk system parameters (Howes, 2024).

To assess the impact of modeled damping rates onQp/Qe, we convolve the damping rates γmodel
s with the observed

magnetic power spectra bk,turb to determine the heating rate Qs, see Section S3 in Supporting Information S1 and
Shankarappa et al. (2024) more details. We find Qobs

p (Qbi ‐Max
p ) = − 3.4(− 4.2) × 104 J/s for the forward KAW,

and − 7.6(− 10.0) × 104 J/s for the backwards KAW. This represents a 24% and 19% reduction in the proton
heating rates for the forward and backwards solutions.

4.2. Marginal Stability of Proton Cyclotron Waves

The near‐Sun solar wind is filled with PCWs (Bowen et al., 2020; Liu et al., 2023), which contribute to plasma
heating (T. A. Bowen et al., 2024; Shankarappa et al., 2024). This cyclotron heating, like Landau damping,
modifies the VDF through quasilinear diffusion, leading to a marginally stable state that is effectively transparent
to this mode (Isenberg, 2012; Isenberg & Vasquez, 2015). We consider interval 2024:12:24‐14:08:23, investi-
gating the forward and backward parallel propagating Alfvén/PCW solution in Figure 3 with bulk parameters in
Table S1 of Supporting Information S1. We hold k⊥dp = 10− 3 constant, varying k‖dp.

We define the polarization of the perpendicular electric field as

P = |ER| − |EL|

|ER| + |EL|
, (3)

where ER,L ≡ (Ex ∓ iEy)/
̅̅̅
2

√
. Both the bi‐Maxwellian and observed PCWs have the same polarizations, right‐

handed for the backward waves and left‐handed for the forward waves.

As there is no prominent secondary population in this interval, the VDF exhibits almost mirror symmetry around
v‖ = 0 and the forward and backward PCWs show similar behavior in terms of their dispersion relation and
polarization properties. At k‖ρp ≪ 1, ωr for the two models are nearly identical. For k‖dp ≳ 1, the values begin to
diverge, with the bi‐Maxwellian ωr dipping to lower values due to the impact of stronger damping on the
dispersion relation. Both the forward and backward PCWs have altered damping rates for the observed model,
slightly increasing at k‖dp ≲ 1 but with a significant reduction at k‖dp > 1, dropping by more than a factor of three.

The wavevectors with significant differences in γ( k‖) are bounded by brown dashed lines in Figure 3. Looking at
energy emission and absorption via G{fp[vres‖ ( k‖),v⊥]}, the bi‐Maxwellian model almost entirely absorbs energy
from the PCW, with the strongest absorption near |v‖| ∼ 0.2vA and v⊥ ≲ 0.125vA. For the observed model,
particles in a band of v⊥ counteract the absorption, releasing energy while particles with larger and smaller v⊥
absorb energy. This does not produce an overall instability, but significantly reduces the total damping onto the
protons. It is the sharp velocity gradient for these values of v⊥/vA ∼ 0.1—effectively equivalent to larger T⊥/T‖
values over a narrow range of resonant velocities—that drives this narrow region of velocity space to release
energy, overall moving the VDF towards a marginally stable state. As with the KAWs, this reduction in the proton
damping rate inhibits the immediate dissipation of the wave. These more transparent VDFs enable PCWs to
propagate further before damping away, transporting energy over larger distances than would be expected for bi‐
Maxwellian plasmas.
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4.3. Enhancement of Beam‐Driven Instabilities

Drifting secondary populations are capable of driving instabilities, for example Table 4 of Verscharen
et al. (2019). An example drift‐driven instability is right‐handed fast‐magnetosonic/whistler (FM/W) wave
instability. Right‐handed waves likely driven by such instabilities have been frequently observed in the inner
heliosphere by PSP (He et al., 2022; Shi et al., 2025). We consider an interval susceptible to this instability, 2025‐
03‐22 02:19:00, shown in Figure 4, where a pronounced proton beam is present; bulk parameters are given in
Table S1 of Supporting Information S1. We fix k⊥dp = 10− 3, and vary k‖dp up to 3.

As with the KAWs, ωr for the FM/W waves is nearly identical for the two models. The growth rates for the
backwards propagating waves are nearly the same, with γmax/|ωr| = 3.4 × 10− 3 for the observed model and
γmax/|ωr| = 3.2 × 10− 3 for the bi‐Maxwellian model. As the polarization P is left‐handed, the solution couples
with the back half of the VDF, up to v‖ ∼ − 2.75vA at k‖dp ∼ 1, where the dispersive nature of the solution
bends vres‖ away from the center of the VDF. Given the velocities resolved by SPANi, the backwards FM/W wave

Figure 4. Backward (left) and forward (right) parallel FMW wave dispersion relations for interval 2025‐03‐22 02:19:00. Organized as Figure 3. Regions of n = ±1
resonance, Equation 2, are indicated by shading, with stable/unstable velocities having lighter/darker.
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only resonates with the collar and the extrapolated region, not the region directly supported by observations. It is
therefore unsurprising that the dispersion relations are similar for the observed and bi‐Maxwellian models.

For the forward FM/W wave, the resonance couples with regions of the VDF directly supported by SPANi
measurements. We see a slightly narrower region of unstable parallel wavevectors for the observed model, but an
increase in the fastest growing mode from γ/|ωr| = 1.3 × 10− 3 to 2.1 × 10− 3, a 61% increase in the growth rate.
The wavevectors leading to significant differences in the dispersion relation between the two models are bounded
with brown dashed lines. Evaluating G[fp] reveals that the enhancement in the instability is driven by the steeper
velocity gradient in the secondary population at ( v‖,v⊥) ∼ (2.5,1)vA.

5. Impact of Uncertainty in Bulk Parameter Determination
We next consider errors in proton density, which impact the vA normalization, and in plasma velocity, which
informs the spacecraft‐to‐plasma frame transformation, on the construction of the ALPS grids. Other sources of
uncertainty associated with the processing of the SPANi data into a regular, gyrotropic velocity grid are treated in
the Supporting Information S1, (see Section S2 in Supporting Information S1.) We focus on forward PCWs
associated with interval 2025‐03‐21 13:48:59; similar results are found for other intervals and modes.

We first vary np by±5% and±10%, consistent with typical instrumental uncertainty from the quasi thermal noise
spectroscopy (Moncuquet et al., 2020) used for SPANi calibration, leading to offsets in vA of ±2.23% and
±3.16%. The resulting dispersion relations are shown in the left panels of Figure 5. For this interval, the resonant
proton population in the beam is sufficiently dense to damp the PCWs strongly at k‖dp ∼ 0.6, leading ωr to
change sign.

Variations in np change the wavevector where the solution departs from ωr ≈ k‖vA or the typical asymptotic
maximum (cf. Howes et al., 2014; Eqn. 14), but the two model solutions remain clearly distinguishable. As seen
for the PCWs from 2024‐12‐24 14:08:23, the observed damping rates are significantly reduced compared to the
bi‐Maxwellian model. For this interval, the reduction at some scales is by nearly an order of magnitude. Vari-
ations in γ due to variations in np are minimal, retaining a clear distinction between the dispersion relations from
the two models.

We next vary Usw, which is used to transform the SPANi measurement to the plasma frame prior to the ALPS
array construction. We consider variations of ±3% and ±6%, consistent with expectations of uncertainty from
SPANi, shown in the right panels of Figure 5. As with the density variations, we see qualitative changes to bothωr
and γ, with increased velocity slightly increasing ωr. However, the significant difference in the damping rates

Figure 5. Real frequency |ωr|/Ωp (a, c) and damping rate γ/Ωp (b, d) for the forward PCW for bi‐Maxwellian (purple) and
observed models (green) for 2025‐03‐21 13:48:59. (left) Proton density varies by ±(5,10)%. (right) Proton bulk velocity
varies by ±(3,6)%.
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between the two models remains, and the solutions for both models are distinguishable over most scales above the
proton scales where the solution resonates with observationally resolved velocities.

6. Conclusions
For selected SPANi observations, significant differences in the linear damping behavior are observed for three
different kinds of ion‐scale waves. These changes are driven by structures in the VDF that are not captured by bi‐
Maxwellians models. Including a secondary bi‐Maxwellian population is not sufficient to reproduce significant
enhancements in growth rates or decreases in damping rate from our observed model. The altered plasma response
lowers the predicted KAW and PCW heating rates and reduces the relative absorption of energy by the protons
compared to the electrons. If such reductions are general features of Alfvénic turbulence, this finding impacts
interpretations of ion and electron temperatures in a variety of astrophysical systems, for example Chael
et al. (2018).

The reduction in PCW damping rates offers a potential explanation for the persistence of coherent ion‐scale
PCWs in the inner heliosphere, enabling them to propagate further from where they are generated. Other
mechanisms, for example the Helicity Barrier (Meyrand et al., 2021; Squire et al., 2022), may also contribute to
the presence of PCWs in the near‐Sun environment. As shown by Zhang et al. (2025), heating in imbalanced
turbulence asymmetrically deforms ion VDFs, altering the plasma response from bi‐Maxwellian predictions.
While including instrumental uncertainties in bulk plasma parameters quantitatively change the derived
dispersion relations, the qualitative differences between the observed and bi‐Maxwellian waves remain robust.

Such calculations are possible due to SPANi's energy and temporal resolution, and thus can be performed using
other high resolution measurements, c f. Studies using MMS (Afshari et al., 2024) or Solar Orbiter (Zhu
et al., 2023). Continued improvements in measuring VDFs, for example as discussed by Wilson et al. (2022) or
implemented on future missions (Goodrich et al., 2023; Klein, Spence, et al., 2023; Nicolaou et al., 2020) will
enable further exploration of the impact of VDF structure on plasma wave behavior in space plasmas. Future work
will compare against more sophisticated representations of VDFs, for example Hermite–Laguerre expansions
(Coburn et al., 2024; Wu et al., 2023), Slepian representations (Bharati Das & Terres, 2025), or Gaussian Process
Regression (T. Bowen et al., 2024) that may more accurately capture the velocity gradients than the thin‐plate
spline interpolation implemented here.
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