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Abstract

Magnetic holes are plasma structures that trap a large number of particles in a magnetic field that is weaker than the
field in its surroundings. The unprecedented high time-resolution observations by NASA’s Magnetospheric
Multiscale Mission enable us to study the particle dynamics in magnetic holes in the Earth’s magnetosheath in
great detail. We reveal the local generation mechanism of whistler waves by a combination of Landau-resonant and
cyclotron-resonant wave–particle interactions of electrons in response to the large-scale evolution of a magnetic
hole. As the magnetic hole converges, a pair of counter-streaming electron beams form near the hole’s center as a
consequence of the combined action of betatron and Fermi effects. The beams trigger the generation of slightly
oblique whistler waves. Our conceptual prediction is supported by a remarkable agreement between our
observations and numerical predictions from the Arbitrary Linear Plasma Solver. Our study shows that wave–
particle interactions are fundamental to the evolution of magnetic holes in space and astrophysical plasmas.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Planetary magnetospheres (997); Solar wind
(1534); Interplanetary turbulence (830)

1. Introduction

Space and astrophysical plasmas exhibit electromagnetic
fluctuations and inhomogeneous structures across a very broad
range of scales (Schekochihin et al. 2009; Alexandrova et al.
2013; Verscharen et al. 2019b). In the Earth’s magnetosheath,
plasma turbulence and coherent structures are abundant as a
consequence of the plasma’s bow-shock crossing and processes
around the magnetopause such as magnetic reconnection and
field draping (Retinò et al. 2007; Tsurutani et al. 2011;
Karimabadi et al. 2014).

Magnetic holes are an important type of spatially nonuni-
form and nonlinear coherent plasma structure. They are
characterized by a local dip in the magnetic field with an
anticorrelation between density and magnetic-field variations.
They occur in the terrestrial magnetosheath (Tsurutani et al.
1982; Fazakerley & Southwood 1994; Cattaneo et al. 1998;
Sahraoui et al. 2006; Yao et al. 2020) and other space plasmas
like the solar wind (Tsurutani et al. 2011), the heliosheath
(Burlaga et al. 2006), and cometary environments (Russell
et al. 1987; Plaschke et al. 2018). A candidate mechanism for
the creation of magnetic holes is the mirror-mode instability,
which is a nonpropagating electromagnetic plasma instability
(Chandrasekhar et al. 1958; Hasegawa 1969; Kaufmann et al.
1970; Tsurutani et al. 1982; Southwood & Kivelson 1993;
Fazakerley & Southwood 1994; Fazakerley et al. 1995;
Kuznetsov et al. 2007; Soucek et al. 2008; Kunz et al.
2014). Alternative generation mechanisms include solitons

(Baumgärtel 1999; Li et al. 2016), phase-steepened Alfvén
waves (Tsurutani et al. 2002), and decaying turbulence (Haynes
et al. 2015).

The spatial scale of magnetic holes in the Earth’s
magnetosheath varies from 10ρe (≈10 km) to 5–40ρp
(≈500–3000 km; Tsurutani et al. 2011; Liu et al. 2020; Yao
et al. 2020), where ρe and ρp are the gyroradii of the electrons
and protons. Magnetic holes are capable of trapping particles
due to the mirror force from their nonuniform magnetic field.
These trapped particles bounce back and forth between the
mirror points of these structures. At small scales, kinetic effects
such as microinstabilities can regulate the dynamics of both the
trapped and the untrapped particles in magnetic holes via
wave–particle interactions. If a magnetic hole changes in depth,
betatron and type-1 Fermi acceleration cause the particles to
evolve collectively in velocity space (Southwood & Kivelson
1993; Pantellini et al. 1995; Kivelson & Southwood 1996;
Chisham et al. 1998; Soucek & Escoubet 2011; Ahmadi et al.
2018; Breuillard et al. 2018; Li et al. 2021). However, there is
still a significant lack of direct evidence for particle diffusion in
wave–particle interactions at kinetic scales and of the under-
standing of the multiscale evolution of magnetic holes. Here,
we present such direct evidences for these processes and the
important role of wave–particle interactions in a converging
magnetic hole based on on multispacecraft data from the
Magnetospheric Multiscale (MMS) mission.

2. Particle Diffusion in Converging Magnetic Holes: a
Multiscale Model

In this section, we develop a conceptual model to explain the
multiscale evolution of a converging magnetic hole. We
summarize our model visually in Figure 1.
The magnetic hole is characterized by a spatially nonuniform

magnetic-field configuration with a significant number of particles
trapped near the magnetic-field minimum (illustrated as the purple
shade in Figure 1(a)). Due to the nonuniform magnetic field
associated with the magnetic hole, particles are subject to the
mirror force when their magnetic moment is conserved. The
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trapping of particles is described by a critical pitch-angle θc
(Kivelson & Southwood 1996), so that

( )B Bsin , 1c maxq =

where B and Bmax are the local magnetic field and the maximum
magnetic field of the structure. Particles with a pitch-angle θ that
fulfills θc< θ< (180°− θc) are effectively trapped and bounce
between their mirror points where their velocity component parallel
to the magnetic field reverses its sign. This particle motion with the
overlaid gyration motion is illustrated by the black spirals in
Figure 1(a). Particles with a pitch-angle θ< θc and θ> (180°− θc
— inside the loss cone—stream through the magnetic hole. The
trapping of particles marks the formation of a nonpropagating
spatial structure by retaining pressure balance between the local
magnetic pressure PB and the local plasma thermal pressure Pn
(Schwartz et al. 1996; Soucek & Escoubet 2011). If the magnetic
hole is not in pressure balance (Yao et al. 2020), it either converges
or diverges until pressure balance is achieved.

In a converging magnetic hole, the convergence of the mirror
points of the trapped particles causes type-1 Fermi acceleration.
The decreasing magnetic field in a converging magnetic hole
causes betatron cooling of the particles (Southwood &
Kivelson 1993) due to the conservation of the magnetic
moment. The Fermi acceleration increases the velocity
component of the trapped particles in the directions parallel
and antiparallel to the magnetic field, while the betatron
cooling decreases the velocity component of the trapped
particles in the perpendicular direction.

Assuming gyrotropy, Figure 1(b) shows the isocontours of
the velocity distribution function (VDF) fe(v∥, v⊥) of particles
in the plasma frame in a magnetic hole, where v∥ and v⊥ are the
velocity components parallel and perpendicular to the magnetic
field. The dashed black and gray lines represent different
critical pitch angles according to Equation (1) for different local
magnetic fields, referred to as θc1 or 180°− θc1, and θc2 or
180°− θc2. Trapped particles are illustrated with a purple shade
in Figure 1(b). The black arrows in Figure 1(b) show the
velocity-space trajectories of particles with different pitch
angles due to Fermi acceleration and betatron cooling as the
magnetic hole converges.
As a consequence of the Fermi and betatron effects, a pair of

counter-streaming electron beams (blue shaded in Figures 1(b)–
(c)) form in velocity space. Beams represent a non-equilibrium
plasma state that can drive kinetic microinstabilities (Gary 1993).
In particular, counter-streaming electron beams can drive unstable
electromagnetic whistler waves with right-handed polarization and
frequencies below the local electron cyclotron frequency.
Whistler waves are frequently observed in magnetic holes, but

the excitation and origin of these waves are a matter of ongoing
research (Zhang et al. 1998; Huang et al. 2019; Ren et al. 2019;
Yao et al. 2019; Kitamura et al. 2020). Recently, so-called
pancake, donut-shaped, or butterfly pitch-angle distributions with
beams of electrons have been proposed as sources for the wave
excitation possibly via cyclotron resonances (Zhima et al. 2015;
Ahmadi et al. 2018; Breuillard et al. 2018; Behar et al. 2020;
Huang et al. 2020; Zhang et al. 2021). However, there is still a
lack of consistent evidence underpinning the nature of the

Figure 1. Illustration of our conceptual model for a converging magnetic hole. (a) A schematic of the trapped electrons (shaded) in a magnetic hole. The black spirals
centered on the dotted lines represent the bouncing electron trajectories. (b) A sketch of the formation of beams in velocity space by Fermi acceleration and the
betatron effect during the convergence of the magnetic hole. Particle velocity-space trajectories at different pitch angles are shown by the black arrows. (c) A sketch of
quasi-linear diffusion paths in a two-beam electron velocity distribution function. The particle diffusion paths (blue arrows) are locally tangent to semicircles (shown in
blue) about the parallel phase speeds ∣ ∣v kf

0
w w= of the forward-propagating waves and ∣ ∣v kb

0
w w= - of the backward-propagating waves. The diffusion paths

always point toward lower phase space density. For (b) and (c), the electron distribution is shown as black semicircles and two beams are highlighted as blue shaded
areas.
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resonant waves and the role of the quasi-linear evolution of these
instabilities for the evolution of magnetic holes.

In quasi-linear theory, field-aligned electron beams evolve
under the action of whistler-wave instabilities via either Landau
or cyclotron-resonant wave–particle interactions (Shapiro &
Shevchenko 1962; Kennel & Engelmann 1966; Rowlands et al.
1966; Verscharen et al. 2019a; Jeong et al. 2020). The particles
that participate in resonant wave–particle interactions have a
velocity component v∥ parallel to the local magnetic field that
fulfills the resonance condition

( )v v
n

k
, 2res

n w e




w
= =

+ W

where vres
n is the nth resonance speed, ωw is the real part of the

whistler-wave frequency, k∥ is the parallel wavenumber, n is an
integer, Ωe= eB/me is the electron gyrofrequency, e is the
electron charge, B is the magnetic field, and me is the electron
mass. The Landau resonance condition corresponds to n= 0 in
Equation (2). In that case, only electrons with v v kres

0
w w= =

resonate and secularly exchange energy with the waves. Mean-
while, resonant electrons undergo diffusion in velocity space
along specific trajectories.

Using a similar format as Figure 1(b), we illustrate the Landau-
resonant interaction between counter-streaming electron beams
and unstable whistler waves in Figure 1(c). In these interactions,
electrons transfer energy to the waves and thus drive them
unstable only if they lose energy when undergoing quasi-linear
diffusion. Since velocity-space diffusion always occurs from
larger values of fe to smaller values of fe, this condition requires
that ∂fe/∂v∥> 0 at vf

0 (i.e., forward-propagating waves), and
∂fe/∂v∥< 0 at vb

0 (i.e., backward-propagating waves). Unstable
slightly oblique whistler waves with k∥> 0 and k∥< 0 are excited,
and the parallel/antiparallel component of the wave electric field
is responsible for the particle diffusion.

In Figure 1(c), blue dashed semicircles illustrate the diffusion
paths of resonant particles that undergo wave–particle interactions.
The direction of the diffusion is always tangent to semicircles
around the associated ωw/k∥ since quasi-linear diffusion is energy-
conserving in the reference frame that moves with the parallel
phase speed of the resonant waves (Verscharen et al. 2019b). We
use blue arrows in Figure 1(c) to illustrate the diffusion trajectories
of Landau-resonant electrons in our case.

For consistency, our multiscale model requires that the
quasi-linear diffusion rate νd is less than the growth rate of the
unstable whistler waves γw, which itself must be much less
than the wave frequency ωw of the unstable waves. Since the
driving of the quasi-linear diffusion depends critically on the
trapping effect, we require that νd is less than the trapping
frequency 1/τt of the bouncing electrons, where tt is the
trapping time. The slowest process in our model is the ion-scale
growth of the magnetic hole, estimated as the linear mirror-
mode growth rate γm, which we thus set as the smallest
characteristic frequency in our scenario. This timescale
ordering of these processes is given by

( )1
. 3m d

t
w w e  g n

t
g w W 

3. Data Set

Only recently, direct in-situ measurements of the details of
the electron behavior in magnetic holes on a short timescale

have become possible due to the unprecedented high time-
resolution electron velocity distribution data from the MMS
mission. We use data from the MMS mission when the
spacecraft were in the Earth’s magnetosheath on 2017 January
25 from 00:25:40 UT to 00:26:15 UT. The magnetic-field data
are provided by the fluxgate magnetometer (FGM; Russell
et al. 2016). The high time-resolution electromagnetic-field
data are provided by the search-coil magnetometer (SCM) and
the electric double probes (EDP; Torbert et al. 2016). The
particle velocity distribution data are retrieved by the fast
plasma investigation (FPI; Pollock et al. 2016). We focus on
the high time-resolution dynamics of wave–particle interactions
and diffusion of the trapped electrons in the magnetic hole. All
data used in this paper are high time-resolution burst
mode data.

4. Results

4.1. Particle Trapping and Diffusion in the Magnetic Hole

Figures 2(a)–(j) show a magnetic hole crossing observed by
MMS. Figures 2(a) and (b) show the ion density and magnetic-
field strength observed by the four MMS, which were in a
tetrahedral formation with a quality factor of 0.891 at the time
of measurement. The four spacecraft observe almost identical
profiles in the measured quantities due to the small spacecraft
separation (≈10 km) compared to the size of the magnetic hole.
We find a clear anticorrelation between the magnetic-field
strength and the plasma density, which is a characteristic
property of magnetic holes. The plasma density assumes its
maximum when the magnetic field strength assumes its
minimum at the center of the magnetic hole. Figure 2(c) shows
the magnetic-field components observed by MMS1 in the
Geocentric Solar Ecliptic coordinate system (GSE). The
magnetic-field variations are dominated by the field’s
z-component. Figures 2(f) and (g) show the differential energy
fluxes of ions and electrons measured by FPI on board MMS1.
The magnetosheath plasma is anisotropic in the magnetic hole
and is composed of intense hot ions (few hundreds of eV) and
cold electrons (few tens of eV). The electron energy exhibits a
local enhancement inside the magnetic hole.
We calculate the linear growth rate of the mirror-mode

instability using the New Hampshire Dispersion Relation
Solver (NHDS; Verscharen & Chandran 2018) based on the
observed plasma parameters. The average plasma parameters
from 00:25:30 UT to 00:26:00 UT corresponding to about three
wavelengths of the mirror mode are: the magnetic-field strength
B= 44.22 nT, ion number density n= 43.89 cm−3, proton
perpendicular thermal speed vth,p⊥= 1.87× 102 km s−1, proton
parallel thermal speed vth,p∥=1.44× 102 km s−1, electron
perpendicular thermal speed vth,e⊥= 3.03× 103 km s−1, elec-
tron parallel thermal speed vth,e∥= 2.89×103 km s−1, and
plasma bulk speed vsw= 123.89 km s−1. As shown in
Figure 2(k), NHDS predicts that the plasma is unstable to the
mirror-mode instability with a maximum growth rate of
γm≈ 0.0003 Hz at a wavevector of about km= 0.005 km−1,
corresponding to a wavelength of about λm= 2π/km=
1257 km. The angle between the wavenumber at maximum
growth and the magnetic field is 81°. Since the real frequency
of mirror modes is zero (i.e., not propagating), this structure is
convected by the plasma bulk flow. The NHDS results for all
four MMS spacecraft measurements are almost identical
because their separations are much smaller than the structure.
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Figure 2(j) shows a sketch of the MMS trajectory during the
magnetic hole crossing. The magnetic hole is elongated along
the direction parallel to the magnetic field. The sampling
direction relative to the magnetic-field direction of MMS
largely depends on the angle between the plasma bulk flow and
the background magnetic field (θbv), in this case θbv= 51°.
Thus we approximate the convection time of a half-wavelength
of the mirror-mode structure as

( )
v

sin 81

2 sin
6.4 s. 4c

m

sw bv
t

l
q

=


»

This value is in agreement with the duration of the magnetic hole
in the MMS observation from 00:25:42 UT to 00:25:48 UT.

Figures 2(h) and (i) show the pitch-angle distribution
functions of electrons with energies 10–23 eV and with energy
greater than 23 eV. The black and the white dotted lines in
Figures 2(h) and (i) represent the critical pitch angles θc and
180°− θc for particle trapping from Equation (1). Most of the
electrons in these energy ranges are trapped in the magnetic
hole (i.e., between both dotted lines). We approximate the
typical electron trapping time as

( )v 0.42 s, 5t m th, et l= »

where vth,∥e is the local thermal speed parallel to the magnetic field
of the electrons at the center of the magnetic hole. The timescale
of the electron bounce motion is much smaller than the convection

time (τt= τc). The depletion of electrons near 90° in Figures 2(h)
and (i) is direct evidence for betatron cooling, which is referred to
as donut-shaped pitch-angle distributions by recent in-situ
observations (Soucek & Escoubet 2011; Ahmadi et al. 2018;
Breuillard et al. 2018; Li et al. 2021). As the magnetic hole
converges and the magnetic field decreases, betatron cooling
reduces the perpendicular velocity of the trapped electrons. In our
case, we find a strong depletion of 10–23 eV electrons inside the
critical trapping angle in Figure 2(h).
Using the timing technique (Russell et al. 1983), we find that the

magnetic hole converges at its inbound boundary with a velocity
of about [−0.25, 0.5, −3.25] km s−1 in GSE coordinates. Due to
the pressure gradient, this converging motion almost along the
magnetic-field direction directly causes the Fermi acceleration of
electrons. This is in agreement with the increase of electron energy
in the energy spectrogram shown in Figure 2(g). The Fermi
acceleration also leads to “X-shaped” leakage of >23 eV electrons
to the loss cone as shown in Figure 2(i). All of these signatures are
consistent with our predicted large-scale dynamics for a conver-
ging magnetic hole illustrated in panels (a) and (b) of Figure 1.

4.2. Resonant Instability of Counter-streaming Electron Beams

Figure 3 shows the contours of the electron VDF measured
by FPI on board MMS1 near the center of the magnetic hole on
2017 January 25 between 00:25:44.38 UT and 00:26:44.80 UT.

Figure 2. Magnetospheric Multiscale (MMS) mission observations of a magnetic hole on 2017 January 25 from 00:25:30 UT to 00:26:00 UT. (a) Ion number
densities. (b) Magnetic-field strengths. (c) Magnetic-field components measured by MMS1 in GSE coordinates. (d) Velocity components of ions and electrons
measured by MMS1 in GSE coordinates. (e) Ion thermal pressure, magnetic pressure, and the sum of thermal and magnetic pressures. (f) and (g) ion and electron
differential energy flux spectrograms. (h) and (i) electron pitch-angle spectrograms of 10–23 eV and >23 eV electrons. The black/white dotted lines in (h) and (i)
indicate the critical pitch angles according to Equation (1). (j) A sketch of the magnetic hole crossing by the MMS tetrahedron shown in GSE coordinates. (k) The
growth rate of the mirror-mode instability calculated by NHDS using average parameters of the MMS1 measurements, where dp is the proton inertial length and Ωp is
the proton gyrofrequency.
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The VDFs from all four MMS spacecraft are nearly identical.
Errors from photoelectrons and secondary electrons are
corrected in the VDFs (see Appendix C). We plot the contours
of fe(v∥, v⊥) in a layout similar to Figure 1(b). The black dashed
lines denote the critical pitch-angles θc and 180°− θc according
to Equation (1). The blue vertical lines show the Landau
resonance speeds of forward-propagating (dashed) whistler
waves with phase speed vf

0 and backward-propagating (solid)
whistler waves with phase speed vb

0 for which the integer n in
Equation (2) is equal to zero. The red vertical line represents
the cyclotron resonance speeds for n=−1 in Equation (2) for
forward-propagating (dashed) and backward-propagating
(solid) whistler waves. The green lines mark the same for
n=+1 in Equation (2) for forward-propagating (dashed) and
backward-propagating (solid) whistler waves.

The electron VDF is non-Maxwellian and has two significant
enhancements near v∥≈±1.5× 103 km s−1, corresponding to a
pair of counterstreaming electron beams with energies between
10–23 eV. This pair of electron beams is partially located just
outside the critical trapping pitch angle (i.e., inside the loss
cone), consistent with our prediction shown in Figure 1(b).

We calculate the Landau resonance speed of forward-
propagating (backward-propagating) whistler waves vf

0 =
1.43 103´ (v 1.43 10b

0 3= - ´ ) km s−1 by inserting n= 0 to

⎜ ⎟⎜ ⎟⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
( )

/v
B

m n
n

cos
cos ,

6

b f
n

2

0 e e

e

w
2

k
k

w

e

w

e

2
1
2

m w q
q

w w
=

W
-

W
+

W

which is a quasi-linear approximation based on the cold-plasma
dispersion relation (Lengyel-Frey et al. 1994), where μ0 is the
vacuum permeability. We use a wave angle θk= 10° and a ratio
between the whistler waves and electron gyrofrequency of
ωw/Ωe= 0.3 since this is close to the frequency of whistler
waves in our observation (see Section 4.3 for more details).

We find that ∂fe/∂v∥> 0 at v 1.43 10f
0 3= ´ km s−1 and

∂fe/∂v∥< 0 at v 1.43 10b
0 3= - ´ km s−1, meaning that

Landau resonance with the electric-field component E∥ parallel
to the background magnetic field leads to an instability of the
resonant waves. If the whistler waves are not exactly parallel,
they have a sufficient amplitude in E∥ and can thus participate
in Landau-resonant wave–particle interactions. This result
strongly suggests that the counter-streaming electron beams
are the local driver for the whistler-wave generation in the
magnetic hole. During the whistler-wave generation, the
unstable electron VDF diffuses as shown in panel (c) of
Figure 1 of our conceptual model. Like in our Figure 1(c), we
use the blue arrows to show the quasi-linear diffusion
trajectories of the resonant wave–particle interaction in
Figure 3.
Depending on the local gradient of the electron VDF at the

cyclotron resonance speeds, cyclotron-resonant interactions
also contribute to the growth/damping of the whistler waves.
We use the red and green arrows in Figure 3 to show possible
diffusion paths of cyclotron-resonant electrons in velocity
space. In our particular example, the cyclotron-resonant
electrons with n=−1 decrease in their kinetic energy if the
diffusive particle flux in velocity space is directed along the
green arrows shown in Figure 3. This cyclotron-resonant
interaction contributes to the growth of the resonant whistler
waves. In the case of forward-propagating whistler waves with
ωw/k∥> 0, the most-efficient available cyclotron resonance for
electron–wave interactions is the resonance with n=−1. In the
case of backward-propagating whistler waves with ωw/k∥< 0,
it is the resonance with n= 1. However, in the case of the
resonance with n= 1, the direction of the diffusive particle flux
is toward greater (v v2 2

+^ ) due to the gradients of the electron
VDF at the resonance speed, which thus corresponds to a
contribution to the damping of the resonant whistler waves.
The overall instability of the whistler waves is the result of
contributions from resonances with all accessible n.

Figure 3. Averaged contour plot of the electron velocity distribution function (VDF) measured by MMS1 FPI in velocity space (v∥, v⊥) on 2017 January 25 from
00:25:44.38 UT to 00:25:44.80 UT. The blue solid and dashed lines denote the Landau resonance speeds with whistler waves calculated based on the local parameters.
The red and green vertical lines denote the cyclotron resonance speeds with n = −1 and n = 1 in Equation (6). Dashed and solid line styles represent the resonance
speed for the forward-propagating and backward-propagating waves. The black dashed lines represent the critical pitch-angle θc according to Equation (1). The
colored arrows represent the quasi-linear diffusion trajectories of resonant interactions. The gray semicircles represent constant kinetic energy (i.e.,
v v constant2 2

+ =^ ). The colored contour lines are highlighted to show the local gradients of the VDF. VDF values smaller or greater than the color bar range
are not shown here.
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4.3. Properties of the Unstable Whistler Waves: Theory and
Observations

We mathematically evaluate the consequence of the large-
scale convergence: the stability of the observed electron VDFs
in the magnetic hole, with the Arbitrary Linear Plasma Solver
(ALPS) code (Verscharen et al. 2018). We model the electron
VDF by using a four-component VDF model, which has two
drifting electron beams, one Maxwellian core, and one
modified Moyal distribution to model the observed flat-top
distribution (see Appendix B for more details). Different from
traditional Maxwellian plasma dispersion solvers, ALPS allows
us to include the non-Maxwellian Moyal component. We
implement a fitting technique for the electron VDF data around
the center of the whistler-wave emission on 2017 January 25
from 00:25:44.38 UT to 00:26:44.80 UT. The fit parameters for
the electron VDF shown in Figure 3 are listed in Table 1. The
electron plasma frequency is about 13Ωe (i.e., 6.33× 104 Hz).

The growth rate and real frequency of the unstable whistler-
mode predicted by our ALPS calculations are shown in
Figures 4(j) and (k). With a wave angle of θk= 10°, the
whistler wave has a growth rate of γw= 27 Hz and a real
frequency of fw≈ 203 Hz at a wavevector of kw= 0.88 km−1.
We find the corresponding phase speed of vw= 2πfw/kw≈
1.45 × 103 km s−1.

We show the observed whistler waves with the help of high-
cadence data of electric and magnetic fields measured by the
SCM and EDP instruments on board MMS1. We use the
electric-field fluctuations in a field-aligned coordinate system
based on the average background magnetic field. Figures 4(a)–
(c) show that the electric-field fluctuations parallel to the
magnetic field E∥ have a significant enhancement near the
magnetic field minimum at the center of the magnetic hole. The
parallel electric-field enhancement in the gray-shaded region
coincides with the VDF shown in Figure 3.

Consistently with our multiscale ordering and the required
properties of resonant whistler waves, we find that slightly
oblique whistler waves exist near and at the center of the
magnetic hole. Figures 4(d)–(i) show the polarization proper-
ties of the detected electromagnetic-field fluctuations. We use
the singular value decomposition method to calculate the power
spectral densities of the perpendicular magnetic-field fluctua-
tions, the parallel electric-field fluctuations, and the polarization
properties of the wave fields, such as the ellipticity, the wave
angle θk, the phase speed, and the Poynting flux (Santolík et al.
2003).

As shown in Figures 4(d)–(e), we find significant enhance-
ments of the perpendicular magnetic field and the parallel
electric-field fluctuations at about 202 Hz (i.e., about 0.26 Ωe)
near the center of the magnetic hole on 2017 January 25
between 00:25:44.48 UT and 00:26:44.54 UT. Within this
interval, the ellipticity of the wave and the degree of

polarization is close to unity, suggesting a slightly oblique
right-hand polarized wave. The phase speed averaged at the
frequency of 202 Hz during this interval is about
1.58×103 km s−1. The wave propagates with an average angle
of θk≈ 9° with respect to the direction parallel or antiparallel to
the magnetic field. The whistler waves propagate away from
the source and predominantly along the field direction. Since
the counter-streaming electron beams are not exactly sym-
metric, we observe an unbalanced Poynting flux in the waves.
These observations are in good agreement with the predictions
of our ALPS calculations.
We estimate the diffusion rate νd based on the quasi-linear

approximation as

ˆ ( ) ( )c

B

v k
E

2
cos 0.25Hz, 7d

2
e
2

0
2

sw w
3

w
3

2
w bvn

w
w q»

W
=

where c is the speed of light and Ê
2
 is the power spectral

density of the component of electric-field fluctuations parallel
to the magnetic field at a frequency of 202 Hz (see Appendix A
for more details). As required in Equation (2), the diffusion rate
lies between the fast whistler-wave growth (γw≈ 27 Hz) and
the slow mirror instability growth (γm≈ 0.0003 Hz). The
wavelength of the whistler wave is about λw= 2π/kw≈ 7 km,
which is equivalent to about 10ρe. We note this characteristic
length is much smaller than the length scale of the magnetic
hole. This scale ordering is consistent with our scenario that the
whistler waves are locally generated and diffuse electrons via
resonant interactions at the local gradients of the VDF shown in
Figures 1 and 3.

5. Discussion and Conclusions

We show clear in-situ evidence for resonant wave–particle
interaction between electrons and slightly oblique whistler
waves in a converging magnetic hole in the Earth’s
magnetosheath. We propose a conceptual model and a
consistent ordering for the multiscale particle dynamics in
such a structure. In this model, a converging magnetic hole
generates whistler waves through the interplay between Fermi
acceleration, betatron cooling, and resonant wave–particle
interactions.
We test this idea with MMS observations of a magnetic hole

that converges with a velocity of [−0.25, 0.5, −3.25] km s−1

mostly in the direction of the background magnetic field. As
proposed in our model, a pair of counterstreaming electron
beams is produced.
We observe and explain the local generation of whistler

waves at the magnetic hole center by a combination of Landau-
resonant and cyclotron-resonant wave–particle interactions.
The Landau-resonant interaction is of particular interest for our

Table 1
The Fitting Parameters of Our VDF Data Shown in Figure 3 on 2017 January 25 from 00:25:44.38 UT to 00:26:44.80 UT

nj (m
−3) vth⊥j (m/s) vth∥j (m/s) u∥j (m/s) u⊥j (m/s)

Beam 1 2.18 × 106 2.77 × 106 1.17 × 106 2.99 × 106 3.99 × 105

Beam 2 4.11 × 106 3.27 × 106 1.05 × 106 −2.86 × 106 −6.35 × − 105

Core 1.74 × 107 1.11 × 106 1.16 × 106 8.71 × 103

A (m−6s−3) vth⊥M (m/s) vth∥M (m/s)

Moyal 0.82 × 10−13 4.52 × 106 3.91 × 106
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understanding of the evolution of the magnetic hole. It fills the
velocity space between the electron beams and thus effectively
smooths out the nonthermal features created by Fermi
acceleration and betatron cooling.

The studied magnetic hole fulfills the ordering of scales from
Equation (3): (1) The maximum growth rate of the mirror-mode
instability is γm≈ 0.0003Hz at a wavelength of ≈1257 km. (2)
The estimated quasi-linear diffusion rate for the Landau-resonant
wave–particle interaction of electrons is 0.25 Hz. (3) The typical
trapping frequency of electrons is 2.38 Hz. (4) The growth rate
of the unstable whistler waves is 30 Hz. (5) The frequency of the
unstable whistler waves is about 202 Hz. In this ordering, the
Landau-resonant wave–particle interaction secularly transfers the
kinetic energy of electrons to the unstable whistler waves on a

timescale greater than the typical time of the electron bounce
motion in the magnetic hole structure.
Our study develops and confirms a consistent understanding of

the evolution of converging magnetic holes. Magnetic holes are an
important type of coherent structure in space plasmas that evolve
through a multiscale process that couples the kinetic dynamics of
particle diffusion and energy transfer at electron scales. As a
remarkable signature of these converging magnetic holes, we find
that whistler waves are an important feature of local energy
emission from the kinetic energy of resonant electrons. We note
that the saturation and nonlinear development of the mirror-mode
instability play a nontrivial role in the particle diffusion in
magnetic holes (e.g., Kivelson & Southwood 1996; Kuznetsov
et al. 2007). As a type of quasi-steady plasma structure, magnetic

Figure 4. Polarization analysis and numerical prediction of the unstable whistler waves from MMS1. (a) The magnetic-field strength. (b) Pitch-angle distribution of
electrons from FPI with energy within 10–50 eV. (c) The parallel electric field from EDP. (d) The power spectral density of the magnetic-field fluctuations
perpendicular to the background from SCM. (e) The power spectral density of the electric-field fluctuations parallel to the background from EDP. (f) The ellipticity. (g)
The wave angle θk. (h) The phase speed. (i) The Poynting flux. The three white solid lines in (d)–(i) represent frequencies corresponding to 0.1Ωe, 0.5Ωe, and Ωe. (j)
and (k) our model predictions of the growth rate and the frequency of unstable whistler-mode with different wave angles calculated by ALPS.
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holes experience different stages of their evolution, in some of
which electron-scale waves are present or absent (e.g., Ahmadi
et al. 2018; Huang et al. 2019). Figure 4(e) shows the existence of
electrostatic fluctuations above the frequency of our whistler
waves. Multiple forms of kinetic waves such as electrostatic
solitary waves and electron cyclotron waves have been observed
in magnetic holes (e.g., Yao et al. 2019). However, these
additional wave–particle mechanisms associated with magnetic
holes remain beyond the scope of our current analysis.

Building on our model and observations, it would be
worthwhile to undertake a full numerical evaluation of the
adiabatic effects and the resonant evolution in a quasi-linear
framework. This would further improve our understanding of
the multiscale particle dynamics in coherent structures.
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Appendix A
Estimate for the Quasi-linear Diffusion Rate

In quasi-linear theory, the Landau-resonant wave–particle
interaction between electrons and slightly oblique whistler
waves leads to a slow (compared to the wave period) time
evolution of the VDF according to Kennel & Engelmann
(1966) and Marsch (2006):
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to cause wave–particle interactions,
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and Ẽz is the Fourier amplitude of the parallel component of the
electric-field fluctuations. Resolving the δ function in
Equation (A1), we obtain the simplified quasi-linear diffusion
equation:
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where kx and ky are perpendicular components of the
wavevector k. Assuming that the electric-field fluctuations
have a significant effect on a finite range of k∥ values with
width Δk∥, we find
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where Δk∥ is a finite parallel wavenumber range in which the
wave power δE2 is distributed. We approximate δE2 of the
observed whistler waves by using the power spectral density of

the electric-field fluctuations ˆ ( )E
2
 w in a narrow range of

frequency Δωw in the spacecraft frame according to
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We then use Taylor’s hypothesis (Taylor 1938)
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This allows us to estimate the effect of the quasi-linear
diffusion as
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is the estimated diffusion rate. Based on the solutions ωw and

kw from our linear theory results and with Ê 6 10
2 4
 » ´ -

mV2m−2Hz−1 from our observations at 202 Hz, we obtain the
diffusion rate of νd≈ 0.25 Hz.

Appendix B
VDF Model and the Arbitrary Linear Plasma Solver

The measured distribution of the trapped particles in
magnetic holes deviates from the equilibrium Maxwellian
distribution, especially due to the presence of the discussed
electron beams and the flat-top part of the distribution, which
we model with a bi-Moyal distribution. The bi-Moyal
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distribution is a two-dimensional extension of the modified
Moyal distribution (Klein & Chandran 2016).

To solve the full hot-plasma dispersion relation, we
implement a VDF fitting model as input to our ALPS solver.
Our VDF model is a combination of three bi-Maxwellian
distributions (two beams fb and one core fc) and one bi-Moyal
distribution fM:
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nj, vth⊥ j, vth∥j, vth⊥M, vth∥M, u⊥j, u∥j, and A are fit parameters. Using
the Levenberg–Marquardt fitting technique (Press et al. 1996),

we obtain model parameters for the total electron VDF by
minimizing the residual error.
We show the obtained parameters for our VDF model in

Table 1 and the corresponding contour plot of the VDF model
in Figure 5. The minimized sum of squared residuals is 0.14 on
a logarithmic scale, indicating a good approximation to the real
MMS VDF data. In fact, by comparing to previous models with
only bi-Maxwellian components (e.g., Huang et al. 2020;
Zhang et al. 2021), we find that our model is a simple and
realistic description.

Appendix C
Impact of Photoelectrons and Secondary Electrons

Photoelectrons and secondary electrons are the main sources
of error in the measurement of the electron velocity distribution
function. Electrons are produced when EUV photons strike a
spacecraft surface or an instrument, resulting in both internal
and external errors in electron measurements. The finite
spacecraft potential f accelerates low-energy electrons and
modifies the measurements in the energy range ∣ ∣ef . MMS
has a spacecraft potential controller (ASPOC) that can actively
reduce the absolute spacecraft potential and consequently the
energy of spacecraft photoelectrons.
Figure 6(a) shows the spacecraft potential, which is ≈2.18 V

during our measurement interval, suggesting that the error from
spacecraft photoelectrons is negligible in our study.
When the instrument faces the Sun, secondary electrons are

produced inside the instrument and independent of spacecraft
potential. Figures 6(b) and (c) show the electron VDF without
correction and the VDF of secondary electrons being
corrected. We apply this correction throughout our analysis.
More details about the correction are given at https://lasp.
colorado.edu/galaxy/display/MFDPG/DES+Photoelectrons
+-+further+details.

Figure 5. Contour plot of our velocity distribution function (VDF) model according to Equation (B1) based on the averaged electron VDF data on 2017 January 25
from 00:25:44.38 to 00:26:44.80 UT observed by MMS1. The format is the same as Figure 3.
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