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Energy transfer of imbalanced Alfvénic
turbulence in the heliosphere

Liping Yang1, Jiansen He 2 , Daniel Verscharen3, Hui Li 4, Trevor A. Bowen5,
Stuart D. Bale5,6, Honghong Wu7, Wenya Li8, Ying Wang 2, Lei Zhang9,
Xueshang Feng1 & Ziqi Wu2

Imbalanced Alfvénic turbulence is a universal process playing a crucial role in
energy transfer in space, astrophysical, and laboratory plasmas. A funda-
mental and long-lasting question about the imbalanced Alfvénic turbulence is
how and throughwhichmechanism the energy transfers between scales. Here,
we show that the energy transfer of imbalanced Alfvénic turbulence is com-
pleted by coherent interactions between Alfvén waves and co-propagating
anomalous fluctuations. These anomalous fluctuations are generated by
nonlinear couplings instead of linear reflection. We also reveal that the energy
transfer of the waves and the anomalous fluctuations is carried out mainly
through local-scale and large-scale nonlinear interactions, respectively,
responsible for their bifurcated power-law spectra. This work unveils the
energy transfer physics of imbalanced Alfvénic turbulence, and advances the
understanding of imbalanced Alfvénic turbulence observed by Parker Solar
Probe in the inner heliosphere.

Magnetohydrodynamic (MHD) turbulence is believed to play key
roles in a wide range of plasma environments, e.g., astrophysical
systems, the solar system, and plasma laboratories. The collision
between counter-propagating Alfvén wave packets is credited as
the fundamental physical process that drives the energy cascade of
MHD turbulence. This framework has become the predominant
phenomenological description in theoretical studies of MHD
turbulence1–4. During such a wave collision, a wave packet suffers a
nonlinear distortion from its interaction with the encountered
oppositely traveling wave packet. When the wave packet undergoes
an order-unity distortion, its energy is deemed to have cascaded to
a smaller scale5. MHD turbulence is called “imbalanced” if the power
of counter-propagating Alfvén waves is different in both directions
with respect to the background magnetic field direction2–10. MHD
turbulence is classified into weak and strong turbulence according

to the strength of nonlinear interactions compared to linear
interactions3,11,12. Nonlinear processes and the corresponding
energy spectrum of the MHD turbulence are still among the most
controversial problems in MHD research13. It is especially still
unclear whether strong nonlinear distortions make the waves lose
their identity, or whether nonlinear interactions between waves
continue in a wave-like sense along the energy cascade after mul-
tiple encounters.

Another important concern inMHD turbulence theory is the scale
locality of the cascade, which is embedded in the classical theory of
hydrodynamic turbulence and leads to the well-known Kolmogorov
turbulent scaling laws13. Scale locality means that a fluctuation trans-
fers energy to smaller-scale fluctuations primarily through the inter-
actions with fluctuations of similar size or similar wavenumber in
Fourier space14. There is a hot debate about the scale locality in MHD
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turbulence since large-scale magnetic fields cannot be removed
through a Galilean transformation13,15–18.

As amagnetized super-sonic plasma flow emanating from the Sun
and filling the heliosphere, the solar wind is found to be turbulent
according to in-situ measurements from space missions. Solar wind
turbulence is usually imbalanced, especially close to the Sun19–23. The
turbulence supplies energy to heat and accelerates the solar wind
plasma, especially in the solar corona and the inner heliosphere. The
turbulent solar wind serves as themedium in which energetic particles
travel and are scattered. It thus has a critical influence on the dynamics
and kinetics of the heliosphere. Therefore, studying solar wind tur-
bulence is necessary to understand the transport and transfer of
energy and momentum, solar–terrestrial relations, as well as funda-
mental plasma physics.

One of the cutting-edge problems about solar wind turbulence is
how the energy transfers through nonlinear interactions across scales
and ultimately heats the solar wind. Elsässer variables δZ± describe
two eigenmodes of Alfvén waves propagating in opposite directions24,
and nonlinear interactions between δZ± generate energy cascade of
the solar wind turbulence25–28. To sustain the subdominant inward
propagating Alfvén waves, it is necessary to introduce the reflection of
the dominant outward propagating Alfvén waves or a local source,
such as velocity shears or plasma instabilities. However, the cascade
due to the collision between counter-propagating waves is challenged
by the fact that the solar wind fluctuations initially consist of almost
purely outward propagating Alfvén waves near the Sun. In addition,
this cascade scenario faces challenges in comparison to the observed
spectral behavior of the solar wind turbulence23,29,30.

In this work, we use Parker Solar Probe (PSP) observations and
numerical simulations to examine the two foundational pillars of
imbalanced Alfvénic turbulence: the nature of fluctuations involved in
nonlinear interactions and the scale locality of the cascade. We pro-
pose the following scenario: the outwardAlfvénwaves (δZ+ ) no longer
interact with inward Alfvén waves, but instead interact with co-
propagating fluctuations (δZ�), to produce an energy cascade.
Through both local-scale and large-scale interactions, such a cascade
process describes well both the observed and simulated imbalanced
Alfvénic turbulence. Our findings unveil nonlinear interactions in
imbalanced Alfvénic turbulence and lay the groundwork for the the-
oretical description of the imbalanced Alfvénic turbulent cascade,
which can be fed into dynamical models.

Results
Alfvénic turbulence observed by the PSP spacecraft
Our observational data is from the PSP spacecraft, which approaches
the Sun to explore the nature ofMHD turbulence in the new frontier of
the young solar wind31. Figure 1 showsmeasurements by the PSP at its
perihelion distance of 0.17 a.u. on 6 November 2018. The perturbed
plasma velocity δV and magnetic field δB display an excellent corre-
lation. The normalized cross-helicity σc is 0.84. The angle between the
sampling direction and the ambient magnetic field direction is
about 132

�
.

Figure 1 also shows that the amplitude of the fluctuating Elsässer
variable δZ+ is generally much greater than the amplitude of its
counterpart δZ�, indicating the presence of imbalanced Alfvénic tur-
bulence. The trace power spectra of δZ+ are statistically steeper than
the spectra of δZ� (Fig. 1D). Such spectral differences in a short fre-
quency range have already been observed by Helios32, although some
cases occasionally show similar spectral steepness33. The power-law
spectral index of δZ+ is around −1.6, while the spectral indexes of δZ�

and the proton number density Np are around −1.0.
The average spectral slopes of δZ+ (-1.6) and δZ� (-1.0) are fea-

tures of the solar wind in the frequency range between 0.001 and
0.1 Hz on 6 November 2018. Shi et al.34 show that, at a mean cross-
helicity of 0.9, the typical spectral slopes are -1.64 (δZ+ ) and -0.99

(δZ�), and at a mean cross-helicity of 0.93, they are -1.55 (δZ+ ) and
-1.10 (δZ�). This comparison suggests that our average spectral slopes
are representative of the PSPdatawith veryhigh cross-helicity. There is
also precedence for a spectral slope of −1 in the high-frequency inertial
range for the density power spectrum in the solar wind in Helios data,
where Marsch and Tu35 report a flattening of the density power spec-
trum. Bruno et al.36 report that most of the flattening is due to inter-
mittent events and the spectral slopes are all approximately −1.
Borovsky et al.37 find a spectral index of the number density spectrum
at high frequencies of -0.58 ±0.36 in ACE data.

Alfvénic turbulence reproduced by numerical simulation
To investigate the physicsof Alfvénic turbulence in the heliosphere, we
conduct a decaying turbulence simulation by advancing the dimen-
sionless compressible MHD equations in a periodic cube with 10243

grid points38,39. Considering that it is unclear what realistic driving
would look like and additional dependence on the driver may be
introduced into the system, here we use a decaying turbulence
setup28,40 instead of a setup with driven turbulence. At a constant
heliocentric distance, the turbulence in the solar wind is considered
statistically stationary. When considering the radial evolution of the
solar wind turbulence, however, its energy shows a decreasing profile
with heliocentric distance41. The decrease is not only due to the solar
wind expansion but also the decay of turbulence19.

The initial fluctuation energy is equipartitioned between the
kinetic and magnetic components, and the initial fluctuations are
defined as Alfvén waves. The initial normalized cross-helicity σc is set
to be approximately 0.7. In general, cross-helicity can be expressed in

terms of δV and δB as 2<δV � δB>=ð<jδVj2>+<jδBj2>Þ, and in terms of

δZ+ and δZ� as ð<jδZ+ j2>� <jδZ�j2>Þ=ð<jδZ+ j2> + <jδZ�j2>Þ. By

adjusting the relative amplitudes of δZ+ and δZ�, we set the initial
normalized cross-helicity. Furthermore, we utilize the relationships

between δV and ðδZ+ +δZ�Þ=2 as well as δB and ðδZ+ � δZ�Þ=2, to
obtain the initial spatial distributions of δV and δB.

Figure 2 displays the features of our simulated MHD turbulence,
which we sample with a virtual satellite whose trajectory resembles
PSP’s orbital geometry in our observations. The periodic boundary
conditions allow the virtual satellite to pass through and reenter the
simulation domainmany times. This approach provides the spacecraft
trajectory with about 105 sampling points. The spectra, calculated by
fast Fourier transformof the sampledpoints, remain constantwhenwe
sample formore than 105 points. Figure 2 shows that, at time=4:0, the
transverse component of δV is well correlated with the transverse
component of δB, leading to σc ~ 0.78. The simulated δZ+ follows a
Kolmogorov (−5/3) spectrum, while the simulated δZ� preserves a
power-law spectral index of about −1. Furthermore, the spectrum of
density ρ stabilizes at a power-law index close to −1 as well. The
simulated density fluctuations have relative amplitudes of about 20%
of the mean density, which is slightly greater than those of the solar
wind density fluctuations in Fig. 1 (about 15%).

The simulation reproduces well the features of the Alfvénic fluc-
tuations, which are observed in certain intervals of PSPmeasurements.
This can also be seen in Supplementary Fig. 1, which shows the simi-
larity between the simulated and observed distributions of occurrence
numbers and pixel-averaged <jδV2

Aj>
0:5

in the σr � σc plane, as well as
variations of the intermittency-related scaling exponents with the
order moments of the structure function.

Supplementary Fig. 2 shows 2D representations of the discretized
differential variables (j∇×Vj, j∇ � Vj, ∂ρ=∂t, and V � ∇ρ), the magnetic
pressure Pmag, and the thermal pressure Pth. The curvature of the
velocity j∇×Vj is far greater than the divergence of the velocity j∇ � Vj.
The distribution of ∇ � Vj j seems irregular and noise-like. The time
derivative ∂ρ=∂t nearly equates toV � ∇ρ (see the regionmarkedby the
white rectangles), suggesting that the advection dominates over the
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compressibility to generate the variation of density. Finally, the mag-
netic pressure Pmag and the thermal pressure Pth are in good anti-
correlation (see the regions marked by the black rectangles), forming
multiscale pressure-balanced structures (PBSs), which have also been
observed in solar wind turbulence before42,43. The balance between the
magnetic pressure and the thermal pressure weakens the role of
ponderomotive force related to the spatial variation of magnetic field
magnitude in generating more compressible fluctuations. Therefore,
with a highly Alfvénic, incompressible initial condition, our compres-
sible MHD simulation converges to a weakly compressible state. A
comparison of Figs. 2, S1, and S2 shows that the converged status with
both high Alfvénicity and weak compressibility resembles the solar
wind turbulence measured by the PSP.

Nature of fluctuations involved in nonlinear interactions
We illustrate the spatio-temporal behavior of the simulated x� com-
ponent of the Elsässer variables, δZ±

x , and jδZ± j for the time from 4.0
until 6.0 in Fig. 3 and Supplementary Movie 1. The fluctuations

associated with δZ+ travel in the direction opposite to the guide field
B0, in agreement with the dispersion relation for anti-parallel propa-
gating Alfvén waves. However, the fluctuations associated with the
minor Elsässer variable δZ� do not counter-propagate with respect to
δZ+ . Instead, the fluctuations of δZ� propagate in the same direction
as δZ+ .

We investigate the propagation speed of δZ±
x by extracting a 1D

cut along the direction of the mean background field B0 (z-direction).
This analysis produces the time-distance diagrams shown in Fig. 4A, B
for the time from0.0 until 1.0 and Fig. 4C, D for the time from4.0 until
6.0. The diagrams for both δZ+

x and δZ�
x display oblique stripes, the

slopes ofwhich correspond to the propagation speed ofδZ±
x along the

z-direction. Figure 4A and B show that δZ+
x and δZ�

x initially have
different propagation speeds. For δZ+

x , the propagation speed
approaches�VA0, while for δZ

�
x , it is approximately VA0. However, for

the time from 4.0 until 6.0 shown in Fig. 4C and D, the propagation
speed of δZ�

x becomes comparable to that of δZ+
x , which is about

�VA0. This behavior reveals that δZ
� is strongly distorted by δZ+ after

Fig. 1 | Alfvénic turbulence observed by PSP. A–C Time series of the fluctuating
variables: plasma velocity component δVn (A, green line), magnetic field compo-
nent δBn (A, blue line), Elsässer components δZ+ (B, green line) and δZ� (B, blue
line), and proton number density Np (C, green line). D and E variation of power
spectral density (PSD) of δZ+ (D, green lines), δZ� (D, blue lines), and the proton

number density Np (E, green lines) with frequency f on one-hour intervals. Two
power-law slopes are marked in black for reference. F and G The variations of the
power-law spectral indexes with time, with their means marked by the
horizontal lines.
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their encounters. Furthermore, the stripes ofδZ�
x appear to be shorter-

lived in time compared to those of δZ+
x .

From the extracted values of δZ±
x , we calculate the auto-

correlation functions (ACFs) of δZ±
x , which are functions of the spa-

tial lag l and time lag τ. We choose about 40 1D cuts to calculate the
average ACF, and show their distributions in τ � l space in Fig. 4E and F
for times between0.0 and 1.0 and in Fig. 4G andH for times inbetween
4.0 and 6.0. For the times between 0.0 and 1.0, the high-level ACFs of
δZ+

x and δZ�
x mainly concentrate around the line l = � VA0τ and the

line l =VA0τ, respectively, confirming again that δZ+
x and δZ�

x are
Alfvén fluctuations propagating in opposite directions. However, for
times between 4.0 and 6.0, the high-level ACFs of δZ+

x and δZ�
x both

concentrate around the line l = � VA0τ confirming that both δZ+
x and

δZ�
x propagate in the same direction at the negative Alfvén speed. The

auto-correlation time scales, which are estimated as the time lag
associated with ACF=e�1, also indicate the rapidly evolving nature
of δZ�

x .
There is no evident propagation of δZ±

x along perpendicular
directions (see Supplementary Fig. 4), meaning that δZ±

x travels ani-
sotropically and mainly along the parallel direction. From the com-
parison between Fig. 4 and Supplementary Fig. 4, we find that the

variations of the fluctuations along the perpendicular directions are
more variable than those along the parallel direction. In balancedMHD
turbulence with a value of <jδB2

x j>
0:5

=B0 comparable to that in our
imbalanced MHD turbulence, counter-propagating waves persist
throughout the development phase of the turbulence (see Supple-
mentary Fig. 5).

To delve deeper into the nature and evolution of δZ�
?, we employ

a first-principles analysis. This involves comparing the spatiotemporal
distribution and evolution of each term in the govern-
ing equations. After defining the generalized compressible term

Tcomp = � 1
ρ
∇Pt +

δZ+
? � δZ�

?
8

∇ � 3δZ� � δZ+� �� δZ+
? � δZ�

?
2

∇ � VA0

ð1Þ

with Pt being the total pressure, the compressible equation of the
perpendicular fluctuating Elsässer variable δZ�

? (see Supplementary
Methods) yields:

∂δZ�
?

∂t
+ VA0 � ∇� �

δZ�
? = � δZ+ � ∇� �

δZ�
? +Tcomp: ð2Þ

Fig. 2 | Alfvénic turbulence sampled in the numerical simulation data.
A–C Spatial series of the fluctuating variables: velocity component δVx (A, green
line), magnetic field component δBx (A, blue line), Elsässer components δZ+

x

(B, green line) and δZ�
x (B, blue line), and density ρ (C, green line) at time=4:0.

D and E variation of power spectral density (PSD) of δZ + (D, green lines), δZ�

(D, blue lines), and the density ρ (E, green lines) with wavenumber k. The dotted

lines in D show the power spectra of δZ+ and δZ� at time=4:0 from our imbal-
anced RMHD simulation. Two power-law slopes are marked in black for reference.
F and G The evolution of the power-law spectral indexes as functions of the
simulation time. The error bars denote uncertainties of the linear fit on log–log
scales. The same ranges on the vertical axes are adopted for (D and E) as well as
(F and G). The displayed variables are dimensionless.
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In this equation, the parallel components of δZ±
? are taken into

consideration. The effects of compressibility are embodied in the
generalized compressible term Tcomp, which acts as a source for δZ�

?.
To understand the generation of δZ�

?, the top panels of Fig. 5 show the
distributions of the left-hand side of Eq. (2), the nonlinear term, and
Tcomp for one component of the perpendicular fluctuating Elsässer
variable, δZ�

x . The variation of ∂δZ�
x =∂t + VA0 � ∇� �

δZ�
x is co-located

with the variation of the nonlinear term� δZ+ � ∇� �
δZ�

x , not with that
of the generalized compressible term Tcomp.

Figure 5D and E show the terms due to compressibility

Tdiv =
δZ+

x � δZ�
x

8
∇ � 3δZ� � δZ+� �

, ð3Þ

and due to the density fluctuations

Tden = � δZ+
x � δZ�

x

2
∇ � VA0: ð4Þ

The values of Tdiv and Tden are far smaller than those of the
nonlinear term. In many places, Tdiv and Tden are anti-correlated and
cancel each other out, which can be readily seen from the distribution
of their sum Tdiv +Tden (Fig. 5F). Synthesizing subfigures of Fig. 5
demonstrates that the nonlinear interactions between δZ� and δZ+

dominate over the compressibility-induced reflection of δZ+ in
creating δZ�.

The left panels of Fig. 6, Supplementary Fig. 6 and Supplementary
Movie 2 clearly show that the local time derivative ∂δZ+

x =∂t correlates

with and ismainly determinedby the linear term VA0 � ∇� �
δZ+

x at times
between 4.0 and 6.0. The linear term is much greater than the non-
linear term � δZ� � ∇ð ÞδZ+

x in amplitude at wavenumbers k > 2. These
features suggest that δZ+

x behaves as anti-parallel propagating Alfvén
waves while retaining a power-law spectral profile.

For δZ�
x shown in the right panels of Fig. 6 and Supplementary

Movie 2, we observe a clear positive correlation between ∂δZ�
x =∂t and

� δZ + � ∇� �
δZ�

x (compare Fig. 6B and D) as well as between
VA0 � ∇� �

δZ�
x and � δZ+ � ∇� �

δZ�
x (compare Fig. 6F and D). The mag-

nitude of the nonlinear term is the largest and about twice the ampli-
tude of the other terms. This suggests that the nonlinear term acts as
the source term for the generation of the variations of the other two
terms and make δZ�

“sail along” δZ+ at speed �VA0. The prevailing
anti-correlation between ∂δZ�

x =∂t and � VA0 � ∇� �
δZ�

x (compare
Fig. 6B and F) reveals again that δZ� no longer represents classical,
parallel-propagatingAlfvénwaves.δZ� appears to “sail along”δZ+ as a
result of the nonlinear term continuously generating δZ�, and δZ�

does not represent a kind of waves but a kind of anomalous fluctua-
tions propagating in the same direction as δZ+ .

The co-traveling δZ� is continuously generated through the
nonlinearity inourwork. It is seemingly similar but essentially different
from the anomalous δZ� produced through the linear reflection of
Alfvén waves at background inhomogeneities discussed in previous
work44–49. The apparent similarity between the two is that the (appar-
ent) propagating direction of the two is the same as that of δZ+ , and
both canbeproduced continuously under appropriate conditions. The
essential differences between them are: (1) The origin mechanism is
different. The anomalous δZ� in our work is driven by nonlinear

Fig. 3 | Distributions of the turbulent Elsässer variables in the simulation
domain at time= 4.0. A andBTheperpendicular components of Elsässer variables
δZ+

x and δZ�
x . C andD Themagnitudes of jδZ + j and jδZ�j. The displayed variables

are dimensionless. The model of the PSP is illustrated in green at the center of the

domain. The simulation box and the spacecraft model are not scaled to size. Their
corresponding temporal propagation and evolution are shown in Supplementary
Movie 1.
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coupling with δZ+ ; (2) The evolution process is different. In previous
work, since δZ� is generated by reflection, it leaves the driving source
and propagates in the opposite direction after generation, which is in
analogy to smoke coming out of a ship’s smokestack46. In this work,
δZ� continues to travel with the driving δZ+ and further facilitates the
nonlinear cascade of its parent δZ+ and itself. In order to distinguish
these two processes, we refer to the anomalous δZ� component in our
work as the NCI-anomalous δZ� (where NCI stands for “nonlinear-
coupling-induced”). We refer to the reflection-driven anomalous δZ�

in formerwork as the LRI-anomalousδZ� (where LRI stands for “linear-
reflection-induced”).

For the current simulation, the plasma βð=Pth=PmagÞ is about 1.4.
To understand the influence of β or compressible perturbations on the
results, we also conduct low βð≈0:71Þ and high βð≈7:6Þ simulations, in
which the relative density fluctuation amplitudes are about 36% and
10%, respectively. In both simulations, the co-propagation of δZ� with
δZ + generated by the nonlinearities persists, which indicates that β
and compressive fluctuations have only little influence on our results.

Results of an additional simulation with small initial perturbation
(δBrms=B0 ≈0:1) in Supplementary Fig. 7 reveal that, for δZ+ , the linear
term still dominates to make δZ + propagate at�VA0. For δZ

�, whose
propagation direction is now opposite to that of δZ+ , the nonlinear
termno longer determines δZ�, and inmany regions of the simulation
domain, compressibility effects are responsible for the generation
of δZ�.

To verify the finding that δZ� is mainly produced by the non-
linearity rather than by compressibility, we conduct a decaying
imbalanced reduced MHD (RMHD) simulation, which numerically
solves Elsässer-potential equations with a fourth-order hyperviscosity
dissipation term10. The dotted lines in Fig. 2D show the power spectra
of δZ± at time=4:0 from our imbalanced RMHD simulation, which
closely resemble those in the compressiveMHD case (the solid lines in
Fig. 2D). Nevertheless, the power of δZ� in the compressive MHD
simulation is slightly higher than that in RMHD simulation. We attri-
bute this discrepancy to the initial seeding of the minority Elsässer

variable by compressibility at early times of the simulation (Supple-
mentary Fig. 13).

In previous simulations of imbalanced Alfvénic turbulence in the
RMHD regime, Perez and Boldyrev50

find that Elsässer energy spectra
have different amplitudes but the same scaling with an index of −3/2,
while Beresnyak and Lazarian23 show that the spectrum of themajority
component is steeper than that of the minority component (spectral
slopes between −1.12 and−1.93). The spectral slopes obtained fromour
simulations of imbalanced Alfvénic turbulence are similar to those
observed in specific intervals of PSP measurements.

In our imbalanced RMHD simulation, δZ+ and δZ� propagate in
the samedirection (see Supplementary Fig. 9). ForδZ+ , the linear term
dominates. For δZ�, ∂δZ�

x =∂t correlates closely with � δZ+ � ∇� �
δZ�

x ,
but has an inverse relationship with� VA0 � ∇� �

δZ�
x , which reveals that

in imbalanced RMHD turbulence, the nonlinear term also acts as the
source term to generate δZ� that co-propagates with δZ+.

Scale locality of the cascade
Lastly, we employ wavevector dynamics analysis to investigate the
energy transfer across various scales , aiming to scrutinize the scale
locality or non-locality of the nonlinear interactions of δZ+ and δZ�.
We estimate the energy transfer rate εðK ,Q,PÞ of δZ± from the energy
in wavenumber shell Q to the energy in wavenumber shell K due to
interactions with δZ in wavenumber shell P according to triadic
interactions. Figure 7A and B show the distributions of εδZ

±
in K �

Q� P space. Shell K receives energy from shell Q with the help of
modes in shell P, leading to positive transfer rates in the plane of
K =Q+ P. Negative transfer rates relate that shell K contributes energy
to shellQ through interactionwithmodes in shellP. This signal clusters
near the plane of Q=K +P. In this sense, Fig. 7A and B represent
quantitative visualizations of the energy transfer rate due to triadic
interactions14,51.

A new feature in Fig. 7A and B is that the triadic interactions are
different between δZ+ and δZ�. For δZ+ in Fig. 7A, δZ� modes with P
varying from small wavenumbers to large wavenumbers participate in

Fig. 4 | Propagation and lifetime estimations of δZ +
x and δZ�

x . A–D Time-
distance (time� z) diagrams of δZ+

x and δZ�
x for the time from 0.0 until 1.0 (A and

B) and from 4.0 until 6.0 (C and D). E–H Distributions of the auto-correlation
function (ACF) of δZ+

x and δZ�
x in the τ (time lag)�l (spatial lag in the z-direction)

plane for times between 0.0 and 1.0 (E and F) and for times between 4.0 and 6.0
(G and H). The black dashed lines show the expected propagation of Alfvén waves
along the z-direction. The displayed variables are dimensionless.
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the relevant triadic interactions. For δZ� in Fig. 7B, only δZ+ modes
with small P participate in the triadic interactions. We further observe
that the total energy transfer rate for δZ+ , εδZ

+

all P , is determined by δZ�

modes with P ≥6, but εδZ
�

all P is dominated by the large-scale interactions
with δZ+ modes satisfying P<6 (see Supplementary Fig. 10).

Figure 7C compares the relative contributions of the large-scale
interactions and the local-scale interactions at different bands of
K-shells for δZ± . As K increases, the proportion of the large-scale
interactions in the total interactions weakens quickly, and becomes
much less than that of the local-scale interactions, suggesting that the
large-scale interactions contribute less than the local-scale interactions
to the energy transfer of δZ+ . The energy transfer in δZ� exhibits the
opposite behavior, where the proportion of the large-scale interac-
tions in the total interactions remains greater than that of the local-
scale interactions. This finding supports our interpretation that large-
scale interactions play a dominant role in the energy cascade of δZ�.
However, for balanced turbulence, the local-scale interactions account
for a more substantial fraction of the energy transfer rate than the
large-scale interactions (Supplementary Fig. 11). The dominance of the
large-scale interactions can be responsible for the k�1 spectrumofδZ�

(see Supplementary Discussion). Likewise, the phenomenological
treatment of δZ+ suggests that the local-scale interactions are
potentially responsible for the k�5=3 spectrum of δZ+ (see Supple-
mentary Discussion).

To understand the influence of the normalized cross helicity σc,
we plot the dependence of δZ± ’s spectral indexes with σc in Fig. 8a,
and the dependencies of ratios between the large-scale energy transfer
(εLS) and the local-scale energy transfer (εlocal) with σc in Fig. 8b. As σc

increases, the spectral index of δZ� rises and approaches −1, while the
spectral index of δZ+ stays around −1.6. These variation trends are
comparable to the observational findings reported by Shi et al. 34. With

increasing σc, the large-scale interactions take increasingly control of
the energy transfer of δZ�. The local-scale interactions, however,
continue to play the dominant role in the energy transfer of δZ+ .

Discussion
Our work suggests that the energy transfer in imbalanced Alfvénic
turbulence is completed by both local and large-scale interactions
between Alfvén waves (δZ+ ) and anomalous fluctuations (δZ�) that
propagate in the same direction as the waves. Although a critical
balance3,52,53 between linear and nonlinear timescales is predicted to
exist for balanced turbulence (Supplementary Fig. 8), we do not find a
critical balance between the linear and nonlinear terms in imbalanced
Alfvénic turbulence. Instead, linearity dominates over nonlinearity for
δZ+ while nonlinearity dominates over linearity for δZ�.

During PSP’s first encounter, the relative density variation is
typically in the range of 0.1–0.2, which suggests that the slow solar
wind probed by the PSP is not completely incompressible47. In this
work, we use the fully compressible MHD framework to reproduce the
solar wind fluctuations with high Alfvénicity and low to intermediate
density fluctuations. Our simulations start from an incompressible,
highly Alfvénic state and finally converge to a weakly compressive
regime. Through the use of incompressible initial conditions,weprime
our simulations to converge towards incompressible solutions as
well54–56. Numerical simulations by Matthaeus et al. 57 show that the
level of compressive fluctuations depends critically on the initializa-
tion. Moreover, high Alfvénic correlations tend to suppress the gen-
eration of compressive modes39,58,59.

During the initial stage of our compressible MHD simulation,
the ponderomotive force, associated with the spatial variation of
the total magnetic field magnitude, triggers density perturbations.
Consequently, compressibility plays a crucial role in shaping the

Fig. 5 | Distributions of the terms in the compressive governing equation (Eq.
(2)) of the perpendicular fluctuating Elsässer variable δZ�

x at time = 4.0. A The
evolution term plus the linear term, B the nonlinear term, C the generalized

compressible term Tcomp (Eq. (1)),D the termTdiv (Eq. (3)), E the termTden (Eq. (4)),
F Tdiv +Tden. The displayed variables are dimensionless.
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precursor dynamics in our analysis. As illustrated in Supplementary
Fig. 13, at time= 1:0, the compressibility induces density variations
in some regions. The divergence of the velocity field exhibits a
comparable magnitude to the curl of the velocity field in numerous
regions of the simulation domain. Similarly, the compressible terms
contribute to the generation of minority Elsässer variables at some
locations. Hence, compressibility plays an important role in
establishing the conditions during the initial stage. However, as the
system evolves, the gradient of the magnetic pressure gradually
assumes balance with the thermal pressure gradient, limiting the
ability of the ponderomotive force to induce additional compres-
sible effects. Consequently, the influence of compressibility
diminishes gradually and, more significantly, during the late-stage
evolution.

When we start the compressible simulation with unidirectionally-
propagating Alfvén waves (cross-helicity of 1 or −1), the ponder-
omotive force is the only way to generate δZ�. As δZ� becomes large
enough, the nonlinearity comes into play to seed δZ�. Meanwhile, the
influence of the ponderomotive force weakens as multiscale pressure-
balanced structures form. As a result, the nonlinearity continues to act

as a source term toproduceδZ� that travels alongwithδZ+ in the later
dynamics with stabilized power-law profiles in the energy spectra.

The compressible governing equations of the perpendicular
Elsässer fields (Supplementary Eqs. (5) and (6)) show that, in the
compressive regime, the perpendicular Elsässer variables cannot be
considered a mere representation of counter-propagating fluctua-
tions. In this work about imbalanced Alfvénic turbulence with weak
compressibility and low-amplitude density fluctuations, both δZ+

? and
δZ�

? propagate with the negative Alfvén velocity. Considering the fact
that nonlinear interactions with large-scale δZ+

fluctuations can be
stronger than those with local-scale δZ+

fluctuations, the non-local
coupling with large-scale δZ+

fluctuations favors the change of the
propagation direction of δZ�.

In our study of homogeneous imbalanced MHD turbulence, we
find a source of δZ�, which is the nonlinearity and co-exists with other
sources of δZ�, like those known from inhomogeneous reflection-
driven MHD turbulence. This source is local and persists, and thus is
complementary to the source due to reflection, which depends on the
large-scale inhomogeneity of the background. We justify that NCI-
anomalous δZ� propagates along with δZ+ , and the coherent

Fig. 6 | Contributions of nonlinear and linear terms to the variations of the
fluctuating Elsässer variables at time = 4.0. A–C The distributions of the evolu-
tion term (A), the nonlinear term (B), and the linear term (C) in the simulation
domain for δZ+

x . D–F The distributions of the evolution term (D), the nonlinear
term (E), and the linear term (F) in the simulation domain for δZ�

x . The orange-
dashed and pink-dashed circles highlight the regions with good correlations

between the terms. G PSDs of � δZ� � ∇ð ÞδZ+
x (green line) and VA0 � ∇� �

δZ+
x (blue

line) as a function of wavenumber k. H PSDs of � δZ+ � ∇� �
δZ�

x (green line) and
VA0 � ∇� �

δZ�
x (blue line) as a function of wavenumber k. Their temporal propaga-

tion and evolution for the time from 4.0 until 6.0 are shown in Supplementary
Movie 2. The displayed variables are dimensionless.
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interaction between co-traveling δZ± sustains imbalanced weak
compressible MHD turbulence as well as imbalanced reduced MHD
turbulence, which are often considered a result of the collisions
between counter-propagating Alfvén waves.

Fully compressible simulations of imbalanced MHD turbulence
and their potential application to solar wind turbulence have received
major attention in the literature recently40,60–64. The nature of the
minority component and its role in the cascade of turbulence are
regarded as some of the core questions related to this issue. To
understand the turbulent cascade in the solar wind, Grappin et al.40

employ simulations of decaying compressible turbulence in three

dimensions, considering both homogeneous and expanding cases. In
the homogeneous simulations, they observe a steep dominant spec-
trum and a flat subdominant spectrum, and the final spectral indices
depend on the initial cross helicity.

In recent studies by Magyar et al.63,64, the coupling and co-
propagation of Elsässer variables are proposed as a new phenomenon
inMHD simulations, yet the setup in theirmodel is a special case, which
requires waves to propagate on transverse inhomogeneities as surface
Alfvénwaves or kinkwaves. In our study, the transverse inhomogeneity
of the Alfvén speed is generated due to nonlinear processes. However,
this inhomogeneity is weak and thus inefficient in the development of

Fig. 8 | Effects of the normalized cross helicity. A on the spectral index of δZ and
B on the ratio between the energy transfer due to large-scale interactions (εLS) and
the energy transfer due to local-scale interactions (εlocal) of δZ. In A, the star

symbols represent results fromShi et al.34, the upper and lower dotted-dashed lines
indicate the spectral indices of δZ± being −1.00 and −1.67, respectively.

Fig. 7 | Rates of energy transfer between different scales at time= 4.0. A and
BDistributions of energy transfer rates, εδZ , from shellQ to shellK bymediation of
P modes in K � Q� P space (A for δZ+ and B for δZ�). The light blue and light
brown surfaces denote isosurfaces of εδZ with the values of −0.01 and 0.01,
respectively. The planes filled with blue and yellow stripes denote the relations

K =Q+P, and Q=K +P, respectively. C Ratios of the energy transfer rate by large-
scale interactions (dashed lines) and by local interactions (solid lines) to the
transfer rate due to all triadic interactions on a band of K-shells for δZ + (green
lines) and δZ� (blue lines). The two vertical dotted lines indicate the inertial range
of the simulated turbulence. The displayed variables are dimensionless.
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surface waves as those proposed byMagyar et al. 63. For surface waves,
the total pressure perturbations act as sources for δZ±

? , and thus
couple them to propagate at the same speed. In our case, owing to the
formation of multiscale pressure-balanced structures, the total pres-
sure perturbations are small and unlikely to play a crucial role in
creating δZ±

? (Supplementary Fig. 2, Fig. 5 and Supplementary Fig. 6).
For surface waves, δZ±

? do not travel at jVA0j, while the propagation
speed of δZ±

? is �jVA0j in our case (Fig. 4).
For β≤ 1, the model of nearly incompressible MHD turbulence

comprises a superposition of a majority population of zero-frequency
2D fluctuations plus the minority population of slab fluctuations. The
non-compressible slab fluctuations correspond to a combination of
counter-propagating Alfvén modes65, and the Elsässer variables δZ±

?
contain both 2D and slab components56. In our model, weak com-
pressible imbalanced MHD turbulence also has two components, but
the dominant component consists of unidirectionally-propagating
Alfvén waves (δZ+

? ) and the sub-dominant component is the NCI-
anomalous δZ�

?, which co-propagates with δZ+
? .

To overcome the shortcoming of 1D observed time series of solar
wind fluctuations, we use 4D spatial–temporal simulation data to
identify the propagation directions. In order to clearly diagnose the
propagation characteristics of Elsässer variables observationally, we
requiremultiple satellites to form a constellation with inter-spacecraft
distances on MHD scales. At present, constellation missions are not
able to meet the above measurement requirement since, for example,
the Cluster-II spacecraft are typically spaced near the ion kinetic
scales and the Magnetospheric Multiscale (MMS) spacecraft are
typically spaced near electron kinetic scales66,67. In the future, to really
solve themystery of the Elsässer variables in solar wind turbulence, we
call for considering a satellite constellation program with spacing
distances including MHD scales. Future constellation mission con-
cepts with many spacecraft (e.g., HelioSwarm and AME)68,69, if imple-
mented, are expected to finally settle the critical issue of Alfvénic
turbulence in the heliosphere.

We analyze the case of imbalanced Alfvénic turbulence with high
cross helicity. The spectral slopes for δZ+ and δZ� change with cross
helicity. An important prospect for future studies is the variation of the
nonlinear interactionswith Alfvénicity. Another issue is that weuse the
backgroundmagneticfield as thepropagationdirection sincewe apply
statistical methods to study the collective behavior of the turbulence.
A local magnetic field averaged over a local neighborhood is poten-
tially better suited as the propagation direction when determining
anisotropy. It would also be interesting to study the role of large-scale
interactions versus a passive cascade in shaping the power-law spec-
trum of compressive fluctuations, which might be related to slow-
mode-like compressive fluctuations70.

We have taken a step forward in understanding the essence of
imbalancedAlfvénic turbulence. A broader topic of interest is the open
question as to how imbalanced Alfvénic turbulence evolves along with
the solar wind’s expansion into the heliosphere. It may experience
complex non-radial expansion and stream interactions34, but these lie
beyond the scope of this work. The initial condition of δZ� set in this
paper may be produced through other mechanisms during the evo-
lution of solar wind turbulence. Combined with the observations by
PSP and Solar Orbiter, our mechanism of energy transfer has the
potential to be an important step to settle the puzzle of solar wind
heating and acceleration as well as heliosphere formation within the
local interstellar medium.

Methods
Observations by the Parker Solar Probe (PSP)
We studied PSP data on 6 November 2018 when PSP was near its first
perihelion. Thedata ofmagneticfieldswere acquired from thefluxgate
magnetometer of the FIELDS instrument suite71 with a sampling rate of
290 vectors s−1. The data of proton number density and fluid velocity

were obtained from the Solar Probe Cup of the SWEAP instrument
suite at a cadence of about 0.58 s72.

To investigate the spectra of the solar wind turbulent fluctuations
and examine their stationary randomness, we first divide the one day
ofmagnetic field, protonvelocity, and proton density data into 24 one-
hour intervals, and then employ a fast Fourier transform to each
interval to calculate the respective trace power spectral densities
(PSDs). We find that the PSD profiles in the frequency range
0:001Hz≤ f ≤0:1Hz can be approximated with a single power law.
Therefore, we adopt a linear fit on log-log scales to estimate the power-
law indices of each interval.

The spectral indices of the PSDs for the perturbed plasma velocity
δV, the perturbed magnetic field δB, the fluctuating Elsässer variables
δZ+ ð=δV+δVA, with δVA =δB=

ffiffiffi
ρ

p
, ρ being density) and

δZ� =δV�δVA

� �
stay stable, which indicates the stationary random-

ness of the different variables.

Numerical simulation
The compressible MHD equations are written in the following non-
dimensional form:

∂ρ
∂t

+∇ � ρVð Þ=0, ð5Þ

∂ρV
∂t

+∇ � ρVV+ Pth +
1
2
B2

� �
I� BB

� �
= ν∇2V, ð6Þ

∂e
∂t

+∇ � V e+p+
1
2
B2

� �
� V � Bð ÞB

� �
=∇ � V � ν∇Vð Þ+∇ � B×ηjð Þ, ð7Þ

∂B
∂t

+∇ � VB� BVð Þ=η∇2B, ð8Þ

e=
1
2
ρV 2 +

p
γ � 1

+
1
2
B2, ð9Þ

j=∇×B: ð10Þ

e and j correspond to the total energy density and current density,
respectively. ρ is the mass density, V is the flow velocity, Pth is the
thermal pressure, B denotes the magnetic field, γ = 5=3

� �
is the adia-

batic index, ν = 10�4
	 


is the viscosity, ηð= 10�4Þ is the magnetic
resistivity, and t is the time. To solve these equations in a cube with a
side length of 2π, we employ the higher-order Godunov code Athena73.
Specifically, we apply a third-order piecewise parabolic method (PPM)
to the reconstruction, the approximate Riemann solver with
Harten–Lax–van Leer discontinuities (HLLD) to the calculation of the
numerical fluxes, and the constrained transport algorithm for ensuring
the divergence-free state of themagnetic field. Each side of the cubical
grid of edge length L is discretized by 1024 uniformgrid points, andwe
implement periodic boundary conditions.

We initialize our simulation with non-compressive waves, and a
background magnetic field B0 (=1) is imposed along the z-direction.
The magnetic field can be written as B=B0 +δB, with δB being the
fluctuating magnetic field. The initial velocity and magnetic field fluc-
tuations δV and δB populate a shell in Fourier k� space with 2≤ k ≤ 5.
We set thesemodes so that they have constant amplitude and random
phases. The initial root-mean-square of δV and δB is about 1, resulting
in an initial turbulent Mach number and initial AlfvénMach number of
about 1.1 and 1, respectively. We run the model of decaying MHD tur-
bulence to approach a state when the power-law spectrum is fully
developed. The simulation run lasts about 6 Alfvén times
tVA

= 1=ðB0=
ffiffiffiffiffiffi
ρ0

p Þ, at which time <jδB2
x j>

0:5
=B0 drops to about 0.5. Our
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simulation traces the evolution with time of the fluctuating kinetic
energy, the fluctuating magnetic energy, the fluctuating Elsässer vari-
ables, and the normalized cross-helicity (Supplementary Fig. 3).

Computation of the auto-correlation function
We calculate the auto-correlation function (ACF) of δZ+

x and δZ�
x as

ACFδZ±
x
l,τð Þ=

Z Z
δZ±

x ðz,tÞδZ±
x ðz + l,t + τÞdz dt, ð11Þ

with l being the spatial lag and τ being the time lag.

Comparison of large-scale and local-sale energy transfer rates
To investigate energy transfer across different scales, we represent the
fluctuating Elsässer variables δZ± by their Fourier series expansions,
δZ± =

P
kδ

eZ± ðkÞeik�x. We then divide the wavenumber space into
spherical shells of unit width centered around the origin. Preserving
only the modes in Fourier space with wavenumbers satisfying
K ≤ Kj j<K + 1, whereK is the shell radius, yields thefilteredfields, which
are denoted as δZ±

K . ForδZ
± , the rate of energy transfer εðK ,Q,PÞ from

energy in shellQ to energy in shell K due to the interaction with δZ∓ in
shell P is then

εðK ,Q,PÞδZ±

=
Z

δZ±
K � ðδZ∓

P � ∇ÞδZ±
Qd

3x: ð12Þ

In order to quantify the contributions of scale non-locality and
scale locality, we calculate the ratio of the transfer rate due to the large-
scale interactions to the total transfer rate, denoted as εδZ

±

LS,b=ε
δZ±

total,b, on a
band of K-shells between Kmin =K=

ffiffiffi
2

p
and K =

ffiffiffi
2

p
K as

εδZ
±

LS

εδZ
±

total

=
XKmax

Kmin

XK�1

Q= 1

εδZ
±

P<6 =
XKmax

Kmin

XK�1

Q= 1

εδZ
±

all P , ð13Þ

and the ratio of the transfer rate due to local-scale interactions to the
total transfer rate, εδZ

±

local,b=ε
δZ±

total,b, as

εδZ
±

local

εδZ
±

total

=
XKmax

Kmin

XK�1

Q= 1

εδZ
±

local P=
XKmax

Kmin

XK�1

Q= 1

εδZ
±

all P : ð14Þ

Here, the total transfer rate εδZ
±

all P , the transfer rate due to the work by

large-scale fields εδZ
±

P<6 , and the transfer rate due to local-scale

interactions εδZ
±

local P are obtained by
PPmax

P = 1
εðK ,Q,PÞδZ±

,
PP = 5

P = 1
εðK,Q,PÞδZ±

,

and
PP = 2Q

P =Q=2
εðK,Q,PÞδZ±

, respectively. Consistent with the works by

Mininni et al.74, the P modes <6 are considered responsible for large-
scale interactions. This choice is also consistentwith our simulation for
which we initially impose large-scale fluctuations with P < 6. The
collection of P modes that lead to the occurrence of the local-scale
interactions agrees with Alexakis et al. 51. The band of K-shells is
consistent with that used by Cho et al. 13.

Data availability
The calibrated observational data from the PSP spacecraft is available
from the CDAWebwebsite (https://cdaweb.gsfc.nasa.gov/) or from the
FTP server (ftp://spdf.gsfc.nasa.gov/). It is worth noting that both of
these two platforms offer identical datasets. The data directly used for
the display figures can be accessed at https://figshare.com under
https://doi.org/10.6084/m9.figshare.24064473. The datasets

generated and analyzedduring the current study are available fromthe
corresponding author upon request.

Code availability
The PSP data were analyzed with the PySpedas, which can be down-
loaded from https://github.com/spedas/pyspedas, and installed
through “pip install pyspedas” in the python environment. The simu-
lations of the compressible MHD turbulence were conducted with the
code Athena, which can be downloaded from https://
princetonuniversity.github.io/Athena-Cversion/. The RMHD turbu-
lencewasmodeled by using the code rmhdtod, which is available from
https://sourceforge.net/projects/rmhdtod/. The analysis of the simu-
lation data can be done with any science program language (e.g.,
Python) according to the formulas provided explicitly in the
manuscript.
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