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Abstract

Using 2D particle-in-cell plasma simulations, we study electron acceleration by temperature anisotropy instabilities,
assuming conditions typical of above-the-loop-top sources in solar flares. We focus on the long-term effect of
Te,⊥> Te,∥ instabilities by driving the anisotropy growth during the entire simulation time through imposing a
shearing or a compressing plasma velocity (Te,⊥ and Te,∥ are the temperatures perpendicular and parallel to the
magnetic field). This magnetic growth makes Te,⊥/Te,∥ grow due to electron magnetic moment conservation, and
amplifies the ratio ωce/ωpe from ∼0.53 to ∼2 (ωce and ωpe are the electron cyclotron and plasma frequencies,
respectively). In the regime ωce/ωpe 1.2–1.7, the instability is dominated by oblique, quasi-electrostatic modes, and
the acceleration is inefficient. When ωce/ωpe has grown to ωce/ωpe 1.2–1.7, electrons are efficiently accelerated by
the inelastic scattering provided by unstable parallel, electromagnetic z modes. After ωce/ωpe reaches ∼2, the electron
energy spectra show nonthermal tails that differ between the shearing and compressing cases. In the shearing case, the
tail resembles a power law of index αs∼ 2.9 plus a high-energy bump reaching ∼300 keV. In the compressing runs,
αs∼ 3.7 with a spectral break above ∼500 keV. This difference can be explained by the different temperature
evolutions in these two types of simulations, suggesting that a critical role is played by the type of anisotropy driving,
ωce/ωpe, and the electron temperature in the efficiency of the acceleration.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Space plasmas (1544)

1. Introduction

The mechanism responsible for electron acceleration in solar
flares is a longstanding open problem in solar physics (see
Miller et al. 1997; Benz & Gudel 2010; Fletcher et al. 2011;
Benz 2017; Oka et al. 2018; Dahlin 2020; Li et al. 2021 for
reviews). Magnetic reconnection within prominent magnetic
loops in the solar corona is thought to be the primary process
for converting magnetic energy into kinetic plasma energy
(Forbes 2013; Miller 2013; Su et al. 2013; Zhu et al. 2016; Gou
et al. 2017; Li et al. 2017; Wang et al. 2017; Cairns et al. 2018).
However, the dominant mechanism by which electrons are
accelerated and the conditions under which it operates remain
to be fully understood.

The leading candidate for the location of the acceleration is
the reconnection current sheets (CS), where multiple processes
are expected to be relevant, including convective and magnetic-
field-aligned electric fields (Kliem 1994; Drake et al. 2005;
Egedal et al. 2012; Wang et al. 2016) and Fermi-type reflections
in coalescencing and contracting plasmoids formed by the
tearing-mode instability of the CS (Drake et al. 2006, 2013; Le
Roux et al. 2015; Du et al. 2018). Recent kinetic simulations are
showing that electron spectra with nonthermal power-law tails
consistent with observations can be produced within the
reconnecting CS (Li et al. 2019; Che & Zank 2020; Che et al.
2021; Arnold et al. 2021; Zhang et al. 2021), and the role played

by plasma conditions in this acceleration (e.g., plasma β and
guide field strength) is currently under investigation (see Li et al.
2021 and Dahlin 2020 for recent discussions of the open
questions).
Additionally, there is observational evidence suggesting that

part of the electron acceleration can also occur outside the CS,
in a so-called above-the-loop-top (ALT) region, located
between the bottom of the CS and the top of the magnetic
loops (e.g., Liu et al. 2008; Chen et al. 2020, 2021). This region
constitutes a highly dynamic environment where a significant
fraction of the energy carried by the reconnection outflow is
dissipated, opening the possibility for several electron accel-
eration processes to occur. For instance, as the reconnection
outflows impinge upon the top of the flare loops, a termination
shock (TS) can form (Chen et al. 2019; Luo et al. 2021),
potentially giving rise to efficient diffusive shock acceleration
(Chen et al. 2015). Also, magnetohydrodynamic (MHD)
simulations show that the plasmoids formed in the reconnection
CS can generate a highly turbulent TS downstream medium
(Takasao et al. 2015; Shen et al. 2018; Cai et al. 2019; Kong
et al. 2020). This turbulent environment has been considered as
a possible site for efficient stochastic electron acceleration
driven by various plasma waves, including fast magnetosonic
waves (Miller et al. 1996; Miller 1997; Pongkitiwanichakul &
Chandran 2014) and whistler waves (Hamilton & Petro-
sian 1992; Petrosian & Liu 2004). In these models, the waves
are generated by MHD turbulence cascade, and their accelera-
tion efficiencies rely on various assumptions, such as the
amplitude and spectral energy distribution of the relevant
modes (Petrosian 2012; Klein & Dalla 2017).
In addition to being driven by the turbulent cascade, it has

been proposed that stochastic acceleration may also be due to
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waves excited by electron temperature anisotropy instabilities
(Melrose 1974). In this scenario, the temperature anisotropy
may be caused by local variations of the turbulence magnetic
field, which can make the electron distribution anisotropic due
to the adiabatic invariance of the electron magnetic moment μe
(µ ^v Be,

2 , where ve,⊥ is the electron velocity perpendicular to

the magnetic field B and ∣ ∣=


B B ).
In this work, we build upon this idea and use 2D particle-in-

cell (PIC) simulations to study the possible role of electron
anisotropy instabilities in stochastically accelerating electrons
in ALT regions. We consider the case where the temperature
perpendicular to the magnetic field B (Te,⊥) is higher than the
parallel temperature (Te,∥). In addition to the possibility that this
anisotropy is produced by local magnetic field growth due to
turbulence, Te,⊥> Te,∥ can also be due to the fact that ALT
regions can act as magnetic traps. Indeed, the increase of the
magnetic field of the loops toward the solar surface should
produce a magnetic mirror that traps large pitch-angle
electrons, probably forming an anisotropic “loss-cone” electron
velocity distribution with Te,⊥> Te,∥ (e.g., Fleishman &
Melnikov 1998). In addition, these traps are expected to
behave as “collapsing traps” as newly reconnected magnetic
field lines tend to pile up on the top of the magnetic loops,
producing an overall growth of the magnetic field within them.
This magnetic growth may also contribute to the increase of the
Te,⊥> Te,∥ anisotropy, as has been shown by previous test
particle studies of electron evolution in collapsing traps
(Karlicky & Kosugi 2004; Minoshima et al. 2010; Xia et al.
2020). Despite these considerations, there is no direct
observational evidence of a Te,⊥> Te,∥ temperature anisotropy
in ALT regions to date, and, therefore, the generation of this
anisotropy is an assumption in our work.

Our study is in part motivated by previous PIC simulation
studies of temperature anisotropy instabilities in regimes
similar to solar flares, where nonthermal electron acceleration
has been found (Gary et al. 2011; Chang et al. 2013; Tao &
Lu 2014; An et al. 2017; Lee et al. 2018; Abdul et al. 2021). In
these studies, arbitrary values for the initial ΔTe/Te,∥
(≡(Te,⊥− Te,∥)/Te,∥) are imposed in the simulations, with the
chosen value of the anisotropy playing a critical role in
determining the efficiency of the acceleration (see, e.g., Tao &
Lu 2014 where the generation of kappa distributions is found,
with the κ-parameter depending on ΔTe/Te,∥). In our
simulations, we adopt a different approach by driving the
anisotropy through an (externally imposed) magnetic field
growth. Including this driving is important because it allows
ΔTe/Te,∥ to be limited by the anisotropy threshold for the
growth of the unstable modes, which is an important aspect in
the evolution of ΔTe/Te,∥ in real systems. Indeed, the existence
of these thresholds has been predicted by plasma kinetic theory
(e.g., Gary & Cairns 1999) and it has been verified by previous
PIC simulations (e.g., Riquelme et al. 2015, 2016, 2017, 2018;
Sironi 2015; Sironi & Narayan 2015), and by in situ
measurements in the solar wind (e.g., Stverak et al. 2008). In
addition, including the anisotropy driving allows the simula-
tions to capture in a self-consistent way the long-term effects of
the unstable modes on the nonthermal component of the
electron velocity distribution and vice versa, as has been shown
by previous PIC studies regarding semirelativistic plasmas
relevant for hot accretion flows around black holes (Riquelme
et al. 2017; Ley et al. 2019).

Our approach thus is to drive the growth of a Te,⊥> Te,∥
anisotropy by externally imposing a macroscopic plasma
motion that continuously amplifies the local magnetic field
due to magnetic flux freezing. After the anisotropy reaches the
threshold for the growth of the unstable modes, these modes
pitch-angle scatter the particles, maintaining the anisotropy at a
self-regulated level and modifying the electron velocity
distribution. One of our goals is to understand the sensitivity
of the electron acceleration to the type of anisotropy driving. In
our runs, we therefore force the growth of the field by imposing
either a shearing or a compressing plasma motion (hereafter,
shearing and compressing simulations, respectively). We show
below that the acceleration efficiencies obtained from these two
driving strategies are significantly different.
Some relevant considerations regarding our simulation

strategy are described here. (i) Although our simulations
include slow (MHD-like) bulk plasma velocities, the simulation
domains are much smaller than typical MHD length scales. In
this way, our runs focus on the microphysics of the interaction
between electrons and the unstable plasma modes by zooming
in on the kinetic length scales of the modes (typically close to
the electron Larmor radius RLe), and taking the MHD evolution
as an external driver. (ii) Our simulations use homogeneous
domains with periodic boundary conditions. This means that
we do not account for the loss of small pitch-angle electrons, as
expected from magnetic trap configurations, and we therefore
ignore the possible formation of a loss-cone velocity distribu-
tion. (iii) In order to optimize our computational resources, we
assume infinitely massive ions. In this way, only the electron-
scale dynamics is captured, with the immobile ions only
providing a neutralizing charge density to the plasma.6

This manuscript is organized as follows. In Section 2 we
describe our simulations setup. In Section 3 we use shearing
simulations to show how the instabilities regulate the electron
temperature anisotropy. In Section 4 we use shearing
simulations to show the way in which the instabilities produce
nonthermal electron acceleration. In Section 5 we show the
compressing case, emphasizing the differences and similarities
with the shearing runs. In Section 6 we briefly discuss the
possible role of Coulomb collisions. Finally, in Section 7 we
present our conclusions.

2. Simulation Setup

We use the PIC code TRISTAN-MP (Buneman 1993;
Spitkovsky 2005). Our 2D simulation boxes consist of an
initially square domain in the x-y plane, which initially contains
a homogeneous plasma with an isotropic Maxwell-Boltzmann
velocity distribution in presence of an initial magnetic field

ˆ=B B x0 0 . The magnetic field is then amplified by imposing
either a shearing or a compressing bulk motion on the particles,
which drives the electron temperature anisotropic with
T⊥,e> T||,e due to μe conservation. In the shearing case, the
plasma velocity is given by v = ^-sxy , where x is the distance
along x̂ and s is the constant shear rate (this setup is shown in
Figure 1 of Ley et al. 2019).7 From flux conservation, the

6 As was done in a previous study of electron acceleration by temperature-
anisotropy-driven instabilities in the context of semirelativistic plasmas,
relevant for accretion flows around black holes (Riquelme et al. 2017).
7 The shear simulations are performed in the “shearing coordinate system”, in
which the shearing velocity of the plasma vanishes, and the two Maxwell
equations and the Lorentz force on the particles are modified accordingly (see
Riquelme et al. 2012).
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y-component of the mean field evolves as a function of time t as
〈By〉=−sB0t (throughout this paper, 〈〉 represents an average
over the simulation domain), implying that |〈B〉| grows as
∣ ∣ ( ( ) )á ñ = +B B st10

2 1 2. In the compressing case, =v
( ˆ ˆ) ( )- + +q yy zz qt1 , where q is a constant that quantifies

the compression rate of the simulation box. In this case,
|〈B〉|= B0(1+ qt)2 (the compressing setup is shown in Figure 1
of Sironi & Narayan 2015).

The initial plasma parameters in our simulations are chosen so
that they represent typical ALT conditions. In these environ-
ments, the reported electron temperatures are usually of a few
tens of MK (Feldman et al. 1994; Masuda et al. 1994, 1995;
Fletcher et al. 2011). Our simulations thus use an initial
temperature of 52 MK, which, when normalized by the electron
rest-mass energy, gives Q º =k T m c 0.00875e e e

init
B

init 2 (kB is
the Boltzmann constant, me is the electron mass, and c is the
speed of light). Additionally, the magnetic field intensity, B, is
typically close to ∼100 G (Kuridze et al. 2019), while the
electron density, ne, is usually estimated in the range ∼108–1012

cm−3 (Feldman et al. 1994; Masuda et al. 1994, 1995; Tsuneta
et al. 1997). If we define the ratio

( )w
w

ºf , 1e
ce

pe

where ωce and ωpe are the electron cyclotron and plasma
frequencies, respectively, we find that when choosing the
fiducial values B∼ 100 G and ne∼ 109 cm−3, fe becomes ∼1
(ωce= |e|B/mec and ( )w p= n e m4 e epe

2 1 2, where e is the
electron charge). Our runs thus use an initial fe≈ 0.53
(implying an initial electron beta b = 0.0625e

init , where
βe≡ 8πnekBTe/B

2). We run both our shearing and compressing
simulations until fe has been amplified to fe≈ 2. This allows us
to compare the shearing and the compressing run under similar
plasma conditions. This also allows us to emphasize the
important role played by fe in determining both the dominant
unstable modes and the efficiency of the acceleration.

Another important physical parameter in our runs is the
initial electron “magnetization”, defined as the ratio of the
initial electron cyclotron frequency and either the shear rate
(w sce

init ) or the compression rate (w qce
init ). Although the

magnetizations in our runs are much higher than unity, for
computational convenience, we chose them much lower than
expected in real flare conditions. Thus, we ensure that our
magnetizations are high enough to not affect our results

significantly by using w sce
init (and w qce

init )= 300, 600, 1200,
and 2400 to show that our results tend to converge as the
magnetization grows.
The numerical parameters in our runs are the number of

macro-electrons per cell (Nepc), the initial electron skin depth
de

init ( wºc pe
init) in terms of the grid point spacing Δx, the initial

box size L in terms of the initial electron Larmor radius RLe
init

( wºvth e, ce
init, where =v k T mth e B e e,

2 init ), and the speed of light c
in units of Δx/Δt, where Δt is the simulation time step. We ran
a series of simulations to ensure that our choices for
magnetization and for numerical parameters do not affect our
results; these simulations are summarized in Tables 1 and 2 for
the shearing and compressing runs, respectively.

3. Electron Temperature Anisotropy Regulation

Before describing the effect of unstable plasma modes in
producing electron acceleration, in this section we describe the
way in which these modes regulate the temperature anisotropy.
Since this regulation is qualitatively similar in the shearing and
compressing runs, our description is based on the shearing
simulations.

3.1. Interplay between Magnetic Field Growth and
Temperature Anisotropy Evolution

Figure 1(a) shows in solid green the linear growth of the y-
component of the mean magnetic field 〈B〉 in shearing
simulation S1200 (see Table 1). The x-component remains
constant at a value of B0 and the z (out of plane) component is
zero, as expected in our shearing setup. In Figure 1(b) we see
that, due to the growth of |〈B〉|, the electron temperatures
perpendicular and parallel to 〈B〉, Θe,⊥ (≡kBTe,⊥/mec

2; solid
black) and Θe,∥ (≡kBTe,∥/mec

2; solid red), grow and decrease,
respectively, as expected from their initially adiabatic evolu-
tions. Indeed, in the initial regime, Θe,⊥ and Θe,∥ evolve
according to the adiabatic Chew–Goldberg–Low (CGL)
equation of state (Chew et al. 1956), shown by the dashed
black and dashed red lines, respectively.8 The departure from
the CGL evolution at t · s≈ 1.4 coincides with the rapid growth
and saturation of δB (≡B− 〈B〉), as shown by the solid red line
in Figure 1(a). This shows that the growth of the temperature
anisotropy is ultimately limited by temperature-anisotropy-
unstable modes, which can break the adiabatic evolution of the
electron temperatures by providing efficient pitch-angle
scattering.

Table 1
Shearing Simulation Parameters

Run w sce
init Nepc Dde x

init L/RLe
init c/[Δx/Δt]

S300 300 100 35 140 0.225
S600 600 100 35 140 0.225
S1200 1200 100 35 140 0.225
S2400 2400 100 35 140 0.225
S1200a 1200 100 25 140 0.225
S1200b 1200 50 35 140 0.225
S1200c 1200 100 35 70 0.225

Note. Simulation parameters for the shearing runs: the electron magnetization
w sce

init , the number of macroelectrons per cell (Nepc), the initial electron skin
depth de

init ( wºc pe
init) in terms of grid point spacing Δx, the box size in terms of

the initial electron Larmor radius (L RLe
init), and the speed of light (c/[Δx/Δt]),

where Δt is the simulation time step.

Table 2
Compressing Simulation Parameters

Run w qce
init Nepc Dde x

init L/RLe
init c/[Δx/Δt]

C300 300 200 50 78 0.13
C600 600 200 50 78 0.13
C1200 1200 200 50 78 0.13
C2400 2400 200 50 78 0.13
C2400a 2400 200 40 78 0.13
C2400b 2400 100 50 78 0.13
C2400c 2400 200 50 39 0.13

Note. Same as Table 1, but for the compressing runs.

8 The CGL equation of state implies that Te,⊥/B and T B ne e,
2 2 remain

constant.
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3.2. The Nature of the Unstable Modes

A 2D view of the relevant unstable modes at t · s= 1.6
(right after the saturation of δB) is given by Figure 2, which
shows the three components of the magnetic and electric
fluctuations δB and δE.9 Both the magnetic and electric
fluctuations show that the dominant modes have an oblique
wavevector with respect to the direction of the mean magnetic
field 〈B〉, which is shown by the black arrows in all the panels.
The dominance of the oblique modes stops at a later time, as
can be seen from Figure 3, which shows the same quantities as
Figure 2, but at t · s= 3.1. In this case, the waves propagate
along the background magnetic field, implying that quasipar-
allel modes dominate both the electric and magnetic
fluctuations.

In order to determine the transition time from the dominance
of oblique to quasiparallel modes, we calculate the magnetic
energy contained in each type of modes. For this, we define the
modes as “oblique” or “quasiparallel” depending on whether the
angle between their wavevector k and 〈B〉 is larger or smaller
than 20°, respectively. The magnetic energies in oblique and
quasiparallel modes are shown in Figure 1(a) using dashed black
and solid black lines and are denoted by dá ñBob

2 and dá ñBqp
2 ,

respectively. We see that the oblique modes dominate until
t · s≈ 2.2. After that, the quasiparallel modes contribute most of
the energy of the magnetic fluctuations, which is consistent with
the two regimes shown in Figures 2 and 3.
An interesting characteristic of the oblique modes is the

notorious fluctuations in the electron density ne, as shown in
Figure 2(h), which suggest the presence of a significant
electrostatic component in the electric field δE. These density
fluctuations are less prominent in the case that is dominated by

Figure 1. Fields and electron temperature evolutions for run S1200 as a function of time t in units of s−1 (lower horizontal axes) and of the instantaneous fe (upper
horizontal axes; using the average magnetic field at each time). Panel (a) shows in solid blue and solid green lines the evolution of the energy in the x and y
components of the mean magnetic field 〈B〉, respectively. The solid red line shows the energy in δB, while the solid black (dashed black) line shows the contribution to
the δB energy given by the quasiparallel (oblique) modes (all in units of the initial magnetic energy). Panel (b) shows in solid black (solid red) the evolution of the
electron temperature perpendicular (parallel) to 〈B〉. The dashed black (dashed red) line shows the CGL prediction for the perpendicular (parallel) temperature. Panel
(c) shows in black (blue) the energy in the electromagnetic and electrostatic component of the electric field fluctuations δE, which satisfy ∇ · δE = 0 and∇ × δE = 0,
respectively.

Figure 2. For run S1200, we show the 2D distribution of the three components of δB: δBx, δBy, and δBz, the three components of δE: δEx, δEy, and δEz, the total δB
energy, and the electron density fluctuations δne (≡ne − 〈ne〉) at t · s = 1.6. Fields and density are normalized by B0 and by the average density 〈ne〉, respectively. The
black arrows show the direction of the average magnetic field 〈B〉.

9
δE is simply equal to E because 〈E〉 = 0 in our shearing coordinate setup.
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quasiparallel modes, as can be seen from Figure 3(h), which
shows that at t · s= 3.1, the electrostatic electric fields are weaker
than at t · s= 1.6. This change in the δE behavior can be seen
more clearly in Figure 1(c), which shows the evolution of the
energy contained in the electric field fluctuations δE, dividing it
into its electrostatic and electromagnetic components (blue and
black lines, respectively). This separation is achieved by
distinguishing the contributions to the Fourier transform of the
electric field fluctuations ( ˜dE) that satisfy ˜d´ =k E 0 (electro-
static part) and · ˜d =k E 0 (electromagnetic part). In the oblique
regime (t · s 2.2), the electric field energy is mainly dominated
by its electrostatic part (dEes

2 ), and after this, it gradually becomes
dominated by its electromagnetic part (dEem

2 ). Figure 1(c) also
shows that this transition occurs when the instantaneous
parameter fe (shown by the upper horizontal axis) is
fe∼ 1.2–1.5. We see in the next section that this transition is
fairly consistent with linear Vlasov theory.

3.3. Comparison with Linear Vlasov Theory

In this section, we show that the transition from the
dominance of oblique modes with a mainly electrostatic
electric field (hereafter, oblique electrostatic modes) to the
dominance of quasiparallel modes with a mainly electro-
magnetic electric field (hereafter, quasiparallel electromagnetic
modes) in S1200 is consistent with linear Vlasov theory.
Indeed, a previous study by Gary & Cairns (1999) predicts that
for the range of electron conditions considered in our study and
assuming a bi-Maxwellian electron velocity distribution, three
types of modes are relevant: parallel, electromagnetic whistler
(PEMW) modes; parallel, electromagnetic z (PEMZ) modes;
and oblique, quasi-electrostatic (OQES) modes, where the latter
are dominated by electrostatic electric fields. In this section we
use linear Vlasov theory to check whether the PEMW or PEMZ
(OQES) modes are theoretically the most unstable when the
quasiparallel electromagnetic (oblique electrostatic) modes
dominate in our run. For this we use the NHDS solver of
Verscharen & Chandran (2018) to calculate the temperature
anisotropy threshold Θe,⊥/Θe,∥− 1 needed for the growth of
these modes, with a given growth rate γg, assuming different
values of fe and Θe,∥.

Figure 4(a) shows the anisotropy thresholds for γg/ωce= 10−2,
which is appropriate for run S1200. We estimate the growth rate
of δB in this run from its exponential growth regime in
Figure 1(a) (t · s∼ 1.2−1.3), which is γg∼ 10s. This implies that
g w~ -10g

2
ce
init, given that in run S1200, w =s 1200ce

init . The
dashed lines in Figure 4(a) consider the thresholds only for
parallel modes (i.e., they consider the lowest threshold between
PEMW and PEMZ modes), while the solid lines consider the
lowest threshold between modes with all propagation angles. We
find that for Θe,∥= 0.002 and 0.006, there are values of fe where
the solid red and solid green lines separate from the corresp-
onding dashed lines. These values of fe therefore correspond to
where the unstable modes are dominated by OQES modes, which
for Θe,∥= 0.002 and 0.006 occurs when 0.4 fe 1.8 and
0.8 fe 1.3, respectively. For values of fe above and below
these ranges, linear theory predicts that the most unstable modes
correspond to PEMZ and PEMW modes, respectively, which is
consistent with the merging of the dashed and solid lines in these
regimes.10

Figure 3. Same as Figure 2, but at t · s = 3.1.

Figure 4. The anisotropy thresholds Θe,⊥/Θe,∥ − 1 for the growth of parallel,
electromagnetic PEMW and PEMZ modes (dashed lines) and of the
combination of PEMW and PEMZ modes in addition to OQES modes (solid
lines) as a function of fe and for Θe,∥ = 0.002 (red), 0.006 (green), and 0.02
(black). Calculations were performed using the NHDS solver of Verscharen &
Chandran (2018). Panels (a) and (b) show the cases with growth rates
γg = 10−2ωce and γg = 10−6ωce, respectively.

10 The predictions shown in Figure 4(a) are in good agreement with Figure
4(c) of Gary & Cairns (1999).
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Thus, the dominance of oblique electrostatic modes in run
S1200 from the moment when the instability sets in ( fe∼ 0.8)
until fe∼ 1.2–1.5, suggests that, in order to be consistent with
linear theory, Θe,∥ should be in the range∼ 0.002–0.006 after
the growth of the instabilities ( fe 0.8). This is indeed what is
shown by Figure 1(b), where Θe,∥ (solid red line) appears in the
range Θe,∥∼ 0.0025–0.005 when fe 0.8.

These results show that the transition between the oblique,
electrostatic to quasiparallel, electromagnetic regimes at
fe∼ 1.2–1.5 in run S1200 is consistent with linear Vlasov
theory, which predicts a transition from OQES to PEMZ modes
at fe∼ 1.3–1.8. Therefore, hereafter we refer to the fe 1.2–1.5
and fe 1.2–1.5 regimes as OQES-dominated and PEMZ-
dominated regimes, respectively.

4. Electron Nonthermal Acceleration

Previous works show that pitch-angle scattering by temper-
ature anisotropy instabilities can produce significant stochastic
particle acceleration (Riquelme et al. 2017; Ley et al. 2019). In
this section we show that electron temperature anisotropy
instabilities can also contribute significantly to the acceleration
of electrons under the conditions expected in contracting loop
tops in solar flares, which are defined by the magnetic field
strength and the electron density and temperature. We show
this first for the w =s 1200ce

init run S1200, and then we show
that the acceleration is fairly independent of w sce

init .

4.1. Case w =s 1200ce
init

The electron energy spectrum evolution for run S1200 can
be seen from Figure 5(a), which shows ( )g -dn d ln 1e e for
different values of t · s (γe is the electron Lorentz factor). This
plot shows the rapid growth of a nonthermal tail starting at
t · s≈ 2.5. After t · s≈ 3.5, this tail can be approximated as a
power law of index αs≈ 2.9 ( ( ) ( )a gº -d n dln ln 1s e e ), plus
a high-energy bump that reaches γe− 1∼ 0.6 (∼300 keV).
Most of the nonthermal behavior of the spectrum starts at
t · s≈ 2.5, which is right after the quasiparallel electromagnetic
modes become dominant, as shown by Figure 1(c).

Figure 5(b) shows a numerical convergence test of the final
spectrum at t · s= 4. It compares run S1200 ( D =d x 35e

init ,

Nepc= 100, and =L R 140Le
init ) with a run with D =d x 25e

init

(run S1200a, dotted blue line), a run with Nepc= 50 (run
S1200b, dotted red line), and a run with =L R 70Le

init (run
S1200c, dotted green line). No significant difference can be
seen between the different spectra, implying that our results are
fairly converged numerically.
In order to identify the energy source for the nonthermal

electron acceleration, we explore first the overall energy source
for electrons (thermal and nonthermal). It is well known that
the presence of a temperature anisotropy in a shearing,
collisionless plasma gives rise to particle heating due to the
so-called “anisotropic viscosity” (AV). This viscosity can give
rise to an overall electron heating, for which the time derivative
of the electron internal energy, Ue, is (Kulsrud 1983; Snyder
et al. 1997)

( )= D
dU

dt
r p , 2e

e

where r is the growth rate of the field (in our setup,
r=−sBxBy/B

2) and Δpe is the difference between the perpend-
icular and parallel electron pressures, Δpe= pe,⊥− pe,∥. In run
S1200, Equation (2) reproduces the evolution of the overall
electron energy gain well. This can be seen from Figure 5(c),
where the time derivative of the average electron internal energy
d〈Ue〉/dt (blue) coincides well with r〈Δpe〉 (green). This result
shows that in our shearing setup, the heating by AV essentially
explains all of the electron energization.
Although the total electron energy gain is dominated by AV,

the work done by the electric field


dE associated with the
unstable modes, ( ·

 
ò dºW e E drE , where


r is the electron

position), can differ significantly between electrons from
different parts of the spectrum, making WE play a key role in
producing the nonthermal tail by transferring energy from the
thermal to the nonthermal part of the spectrum (Riquelme et al.
2017; Ley et al. 2019). We check this by analyzing the
contributions of AV and WE to the energy gain of three
different electron populations, defined by their final energy at
t · s= 4. These populations are listed below.

Figure 5. (a) The electron energy spectrum for run S1200 for different values of t · s, where γe is the Lorentz factor of the electrons. The dashed brown line shows a
power law of index αs ≈ 2.9, which resembles part of the final nonthermal tail. (b) Test of numerical convergence of the final spectrum. We show the electron energy
spectra at t · s = 4 for runs analogous to S1200 (solid black), but using (i) a lower time and space resolution D =d x 25e

init (run S1200a, dotted blue line), (ii) a
smaller Nepc = 50 (run S1200b, dotted red line), and (iii) a smaller box size =L R 70Le

init (run S1200c, dotted green line). No significant difference can be seen
between the different spectra. (c) The time evolution of d〈Ue〉/dt (blue) and of r〈Δpe〉 (green) for the same run, normalized by spe,0, where pe,0 is the initial electron
pressure.
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1. Thermal electrons: their final energy satisfies γe− 1<
0.05, which corresponds to the energy range marked by
the light blue background in Figure 5(a).

2. Low-energy nonthermal electrons: their final energies
satisfy 0.05< γe− 1< 0.2, where the nonthermal tail
roughly behaves as a power law of index αs≈ 2.9. This
energy range is marked by the white background in
Figure 5(a).

3. High-energy nonthermal electrons: corresponding to
the high-energy bump in the spectrum, defined by
0.2< γe− 1. This energy range is marked by the gray
background in Figure 5(a).

Figures 6(a), 6(b), and 6(c) show the energy evolution for the
thermal, low-energy nonthermal, and high-energy nonthermal
electrons, respectively. In each case, we show the average
initial kinetic energy of each population, 〈γe〉0− 1, plus

1. the work done by the electric field of the unstable modes,
WE, shown by the blue lines,

2. the energy gain by the anisotropic viscosity, AV, shown
by the green lines,

3. the total energy gain, shown by the black lines.

The green lines show that for the three populations, there is a
positive energy gain due to AV. On the other hand, the blue
lines in Figure 6(a) show that, in the case of the thermal
electrons, WE produces a decrease in the electron energies. This
illustrates that the thermal electrons transfer a significant part
(∼50%) of their initial energy to the unstable modes. However,
the overall heating of the thermal electrons is positive and, by
the end of the simulation, reaches an increase of a factor ∼2 in
their thermal energy. Figures 6(b) and 6(c) show that for the
low- and high-energy nonthermal electrons, there is a
significant growth in the electron energy due to WE, suggesting
that the unstable modes transfer energy to the nonthermal
particles. For the low-energy nonthermal electrons, the AV still
dominates the heating, whereas for the high-energy nonthermal
electrons, AV is subdominant and most of the electron
energization is due to WE. The red lines in Figures 6(a), 6(b),
and 6(c) show the overall heating of thermal electrons due to
adding AV and WE. The red line reproduces the evolution of

the total energy 〈γe〉− 1 (black line) of the three electron
populations reasonably well.
The way AV and WE contribute to the energization of

thermal and nonthermal electrons suggests that the formation of
an electron nonthermal tail is caused by the transfer of energy
from the thermal to the nonthermal electrons, which is
mediated by the electric field of the waves. This characteristic
of the formation of a nonthermal tail is in line with previous
results, where the acceleration of ions and electrons by
temperature anisotropy instabilities was studied in nearly
relativistic plasmas (Riquelme et al. 2017; Ley et al. 2019).
Also, Figures 6(a), 6(b), and 6(c) show that most of the energy
transfer from thermal to nonthermal electrons occurs after
t · s∼ 2.2, which corresponds to the regime dominated by
PEMZ modes, implying a subdominant contribution to the
acceleration by the initially dominant OQES modes.

4.2. Extrapolation to the (Realistic) Very High ωce/s Regime

The shear parameter s is a measure of the rate at which
temperature anisotropy growth is driven in our simulations. We
can thus estimate the corresponding parameter s in the
contracting loop tops of solar flares as the rate at which
temperature anisotropy grows in these environments. This can
be obtained by estimating the inverse of the time that it takes
for the contracting loop tops to collapse into a more stable
configuration.
We thus estimate s by dividing the typical Alfvén velocity,

vA, in the loop tops (vA should be close to the speed at which
the newly reconnected loops are ejected from their current
sheet) by the typical length scale of the contracting loop tops,
LLT. Using our fiducial parameters ne∼ 109 cm−3 and B∼ 100
G, and estimating LLT∼ 109 cm (e.g., Chen et al. 2020), we
obtain s∼ 1 s−1 and ωce/s∼ 109. This value of ωce/s is several
orders of magnitude higher than what can be achieved in our
simulations. Therefore, two important questions arise. The first
question is whether for realistic values of ωce/s, the dominance
of PEMZ and OQES modes should occur for the same regimes
as observed in run S1200. And, if that is the case, the second
question is whether the effect on electron acceleration of these
modes remains the same, independently of ωce/s.

Figure 6. The different contributions to electron energization for three electron populations in run S1200, normalized by mec
2 . Panel (a) shows the case of the thermal

electrons, defined by their final (t · s = 4) Lorentz factor being γe − 1 < 0.05 (marked by the light blue region of Figure 5(a)). Panels (b) and (c) show the low-energy
and high-energy nonthermal electrons, defined by their final Lorentz factor being in the ranges 0.05 < γe − 1 < 0.2 and 0.2 < γe − 1, respectively (marked by the
white and gray regions in Figure 5(a), respectively). In all three panels, the black line shows the energy evolution of the electrons. The green line shows their average
energy gain due to AV. The blue lines shows the same, but considering the energization by the electric field of the unstable modes (WE) instead of the energization by
AV. The red line shows the energy gain by the addition of AV and WE, and reproduces the total energy evolutions shown as black lines reasonably well.
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Since in Section 3.3 we showed that linear Vlasov theory is
suitable for predicting the dominance of the different modes, in
this section, we use linear theory to show that increasing w sce

init

by several orders of magnitude should not modify the relative
importance of the modes in the different plasma regimes. First,
we note that the growth rate γg of the unstable modes should be
proportional to s, implying that w w gµs gce

init
ce
init . This

proportionality is physically expected because s−1 sets the
timescale for the evolution of the macroscopic plasma
conditions. Thus, the different modes that dominate in different
simulation stages need to have a growth rate of about s to have
time to set in and regulate the electron temperature anisotropy.
This can also be seen from Figure 7(a), which shows the
evolution of the energy in δB divided into oblique and
quasiparallel modes (dashed and solid lines, respectively) for
runs with w =s 600ce

init , 1200, and 2400 (runs S600, S1200,
and S2400, respectively). We see that the three runs show
essentially the same ratio γg/s∼ 10. This means that, in order
to find out which instabilities would dominate for realistically
high values of w sce

init , we must calculate the instability
thresholds for a comparatively high value of ωce/γg. Following
this criterion, Figure 4(b) shows these thresholds using the
same values of fe and Θe,∥ as were used in Figure 4(a), but
assuming γg/ωce= 10−6 instead of 10−2. We see that for
γg/ωce= 10−6, the PEMW, PEMZ, and OQES modes
dominate for values of fe and Θe,∥ that are very similar to
those shown for γg/ωce= 10−2. This implies that the role
played by the different modes in controlling the electron
temperature anisotropy in the different plasma regimes should
not change significantly for realistic values of the shearing
parameter s.

We now investigate whether increasing w sce
init affects the

spectral evolution of the electrons. This is done in Figure 7(b),
where the final spectra (t · s= 4) are shown for runs with
w =s 300, 600ce

init , 1200, and 2400 (runs S300, S600, S1200,
and S24000, respectively). No significant differences are seen
in the final spectra, except for a slight hardening as w sce

init

increases, which does not seem significant when comparing the
cases w =sce

init 2400 and 1200. This shows that the magnetiza-
tion parameter w sce

init does not play a significant role in the
efficiency of the electron nonthermal acceleration.

The lack of a dependence of the acceleration on w sce
init can

be physically understood in terms of the relation between the
effective pitch-angle scattering rate due to the instabilities, νeff,
and s. We estimate νeff using the evolution of Θe,∥, which in a

slowly evolving and homogeneous shearing plasma is given by
Sharma et al. (2007),

ˆ ˆ ( )
 n

Q
+ Q  = DQbb v

d

dt
2 :

2

3
, 3

e
e e

,
, eff

where v is the plasma shear velocity, ˆ ˆ=b B B, and
ΔΘe=Θe,⊥−Θe,∥. Considering that ˆ= -v sxy , we can
rewrite Equation (3) as

( )
ˆ ˆ ( )


nQ
+ Q = DQ

d

d ts
b b

s
2

2

3
. 4

e
e x y e

,
,

eff

Figure 8(a) shows the evolution of 〈ΔΘe〉 for the runs with
w =s 600, 1200ce

init , and 2400 (runs S600, S1200, and
S2400). When t · s 2.2, the factor ΔΘe that appears on the
right-hand side of Equation (4) is very similar in the three runs.
The left-hand side of Equation (4) depends on the evolution of
Θe,∥, which in the t · s 2.2 regime is also similar in the three
runs, as can be seen from Figure 8(b). This means that for
t · s 2.2, the ratio νeff/s in Equation (4) is fairly constant
(within about∼ 10%) for these three values of w sce

init . Thus,
for simulations with a fixed value of wce

init but different s, the
behaviors of 〈ΔΘe〉 and 〈Θe,∥〉 for t · s 2.2 imply that νeff
should be approximately proportional to s. Because of this, the
number of times that the electrons are strongly deflected in a
fixed interval of t · s should be largely independent of w sce

init on
average. Thus, in a stochastic acceleration scenario, we expect
the acceleration effect during a fixed number of shear times
(s−1) to only depend on the dispersive properties of the
unstable modes (see, e.g., Summers et al. 1998), which are not
expected to depend on the value of w sce

init . Indeed, as long as
w sce

init , the mode propagation and oscillations should occur
rapidly (on timescales of w~ -

ce
1), and should not be affected by

the slowly evolving background (on timescales of ∼s−1). These
arguments thus imply that the acceleration efficiency should be
largely independent of w sce

init .
We note that Figures 8(a) and 8(b) show that in the t · s 2.2

regime, 〈ΔΘe〉 and 〈Θe,∥〉 tend to depend more strongly on
w sce

init , so the electron acceleration efficiency should differ
significantly during this period. However, Figure 7(a) shows
that for t · s 2.2, the dominant instabilities are mainly oblique
modes, which is indicative of the dominance of OQES modes.
Therefore, since no significant acceleration is expected to
happen in that regime (as we showed in Section 4.1), the
different evolutions of 〈ΔΘe〉 and 〈Θe,∥〉 for t · s 2.2 should

Figure 7. (a) The evolution of the energy in δB divided into oblique (dashed)
and quasiparallel (solid) modes for runs S2400 (black), S1200 (red), and S600
(green). These runs are equal except for having w =s 2400ce

init , 1200, and 600,
respectively. (b) The final electron spectra for runs S2400 (black), S1200 (red),
S600 (green), and S300 (blue).

Figure 8. (a) The evolution of the average ΔΘe for runs S2400 (black), S1200
(red), and S600 (green). (b) The evolution of the average Θe,∥ for the
same runs.
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not have an appreciable effect on the final electron spectra.
Although this analysis is valid for the rather limited range of
values of w sce

init tested by our simulations, we expect the
νeff∝ s relation to hold even for realistic values of w sce

init . This
is based on comparing the linear theory thresholds presented in
Figures 4(a) and 4(b), which predict ΔΘe/Θe,∥ to have
essentially the same evolution (only differing by an overall
factor ∼3) when decreasing γg/ωce by four orders of
magnitude.

4.3. Pitch-angle Evolution

The evolution of the electron pitch angle is important to
determine the ability of the electrons to escape the flare loop
tops and precipitate toward the footpoints, which is a key
ingredient for solar flare emission models (e.g., Minoshima
et al. 2011). In this section we investigate the way temperature
anisotropy instabilities affect the pitch-angle evolution for
electrons with different energies.

As a measure of the average pitch angle for different electron
populations, Figure 9(b) shows pe,⊥/pe,∥ for the thermal (red),
low-energy nonthermal (green), and high-energy nonthermal
(blue) electrons from run S1200. These three electron
populations are defined according to their final energies, as
we did in Section 4.1 (in each of these cases, the pressures are
calculated only considering the electrons in each population).
For comparison, we also show as dashed black lines the time
dependence of pe,⊥/pe,∥ for a hypothetical, initially isotropic
electron population that evolves according to the CGL equation
of state. The three electron populations show evolutions similar
to the CGL prediction until the onset of the OQES instability,
which, as we saw in Section 3, occurs at t · s∼ 1.4. After this,
the pitch-angle scattering tends to reduce pe,⊥/pe,∥ for the three
populations, which occurs more abruptly for the low- and high-
energy nonthermal electrons, whose pitch angles by t · s∼ 1.7
become∼2–3 times smaller than those of the thermal electrons.
This shows that even though the OQES modes (which
dominate until t · s≈ 2.2) make a subdominant contribution
to the nonthermal electron acceleration, they still have an
important effect by significantly reducing the pitch angle of the
highest energy particles. After this, in the PEMZ-dominated
regime, the anisotropy evolves in the opposite way. In this case,

the pe,⊥/pe,∥ ratios of both populations of nonthermal electrons
grow more rapidly than for the thermal electrons. This is
especially true for the high-energy nonthermal electrons, for
which pe,⊥/pe,∥ reaches values∼2–3 times higher than for
thermal electrons by the end of the run.
This increase in the electron pitch angle of the highest energy

electrons due to PEMZ-mode scattering is consistent with
quasilinear theory results that describe the stochastic accelera-
tion of electrons by whistler/z modes in terms of the formation
of a “pancake” pitch-angle distribution for the most accelerated
electrons (Summers et al. 1998). These results thus suggest
that, assuming a more realistic solar flare scenario where the
electrons were allowed to prescipitate toward the flare
footpoints, the high-energy nonthermal electrons produced by
PEMZ-mode scattering should tend to be more confined to the
loop top than the low-energy nonthermal and thermal electrons.
Figures 9(a) and 9(c) show the same quantities as Figure 9(b),

but for runs with w =s 600ce
init and 2400 (runs S600 and

S2400). After the triggering of the instabilities (t · s∼ 1.4), there
are no substantial differences between the three magnetizations,
suggesting that the energy dependence of the pitch-angle
evolution in our runs is fairly independent of w sce

init .

4.4. Role of the Initial Conditions in the Final Electron
Energies

An interesting aspect of the electron energy evolution is the
correlation between the final electron energies and (i) their initial
energies and (ii) their initial pitch angles. The correlation
between the initial and final energies can be seen from
Figures 6(a), 6(b), and 6(c), which show that for the thermal,
low-energy nonthermal, and high-energy nonthermal electrons,
the initial energies are given by 〈γe〉0− 1∼ 0.01, ∼0.025, and
∼0.04, respectively. This energy correlation is also expected
from the quasilinear theory results of Summers et al. (1998),
which show that the maximum energy that electrons can acquire
due to stochastic acceleration by whistler/z modes increases for
higher initial energies (assuming a fixed value of fe).
Additionally, Figure 9(b) shows that the initial values of

pe,⊥/pe,∥ are higher for electrons that end up being more
energetic, with the initial pe,⊥/pe,∥ being ∼0.9, ∼1.1, and ∼1.7
for the thermal, low-energy nonthermal, and high-energy

Figure 9. Panels (a), (b), and (c) show pe,⊥/pe,∥ for different populations in runs with w =s 600ce
init , 1200, and 2400, respectively (runs S600, S1200, and S2400,

respectively). The populations correspond to the thermal (red), low-energy nonthermal (green), and high-energy nonthermal (blue) electrons, which are defined in
Section 4.1 according to their final energies. In the three panels we also show as dashed black lines the estimated CGL evolution of pe,⊥/pe,∥ for an initially isotropic
population.
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nonthermal electrons, respectively. This is consistent with the
fact that before the PEMZ-dominated regime (t · s 2.2), the
three electron populations gain their energy mainly due to AV,
as can be seen from the three panels in Figure 6. This means
that during this period, energy is gained more efficiently by
electron populations with larger average pitch angle. After this,
given that the scattering by OQES waves strongly reduces the
pitch angle of the nonthermal electrons, their energy gain is no
longer related to their pe,⊥/pe,∥, but to the more efficient
acceleration that the PEMZ modes cause on initially more
energetic electrons.

5. Comparison with the Compressing Case

In this section we show the effect of driving the Te,⊥> Te,∥
anisotropy by using compressive instead of shearing simula-
tions. In order to facilitate comparison, the compressing
simulations use the same initial conditions as in the shearing
case ( fe≈ 0.53, Q = 0.00875e

init ) and are also run until fe
reaches fe≈ 2. In this way, we test whether the transition
between the regimes dominated by OQES and PEMZ modes
also occur in the compressing runs, and whether this is also
accompanied by an increase in the acceleration efficiency.
Since in the compressing runs, ( ˆ ˆ) ( )= - + +v q yy zz qt1 ,
magnetic flux freezing makes the mean magnetic field grow by
the same factor as the mean electron density: (1+ qt)2. Thus, in
order to make fe grow from 0.53 to ∼2, our compressing
simulations run until tq= 3. Similarly to our analysis for the
shearing simulations, first we describe the interplay between
the evolution of the mean magnetic field and the temperature
anisotropy. After this, we concentrate on the nonthermal
evolution of the electron energy spectrum. We show that
although in the compressing case there is significant accelera-
tion driven by the PEMZ modes, this acceleration is less
efficient that in the shearing case.

5.1. Anisotropy Regulation in the Compressing Case

Figure 10(a) shows in solid green the growth of the x-
component of 〈B〉 for simulation C2400 (w =q 2400ce

init ),
which evolves as |Bx|= |〈B〉|= B0(1+ qt)2. Because of this

magnetic amplification, initially, Θe,⊥ and Θe,∥ grow and stay
constant, respectively, as seen from the solid black and solid
red lines in Figure 10(b). For t · q 1, Θe,⊥ and Θe,∥ coincide
with the adiabatic CGL evolution shown by the dashed black
and dashed red lines, respectively. The departure from the CGL
behavior at t · q≈ 1 is coincident with the growth and
saturation of δB, shown by the solid red line in Figure 10(a).
This shows that Θe,⊥ and Θe,∥ are regulated by the pitch-angle
scattering provided by temperature-anisotropy-unstable modes,
as is the case for the shearing simulations shown in Section 3.
Figures 11(a) and 11(b) show a 2D view of δBz for the

unstable modes in run C2400 at t · q= 1.5 (after the saturation
of δB) and t · q= 3, respectively. Although the box initially has
a square shape, the effect of compression makes its y-size
decreases with time as 1/(1+ qt), which explains the
progressively more elongated shape of the box shown by the
two panels. The dominant modes at t · q= 1.5 have wavevec-
tors that are oblique with respect to the direction of the mean
magnetic field 〈B〉, which is shown by the black arrows. At
t · q= 3, the waves propagate mainly along 〈B〉, which shows
that by the end of the simulation, the modes are quasiparallel.
The time for the transition between the dominance of oblique to
quasiparallel modes can be obtained by calculating the
magnetic energy contained in each type of mode. As for the
shearing simulations shown in Section 3, we define the modes
as oblique (quasiparallel) when the angle between their
wavevector k and 〈B〉 is larger (smaller) than 20°.
Figure 10(a) shows the magnetic energies in oblique and
quasiparallel modes using dashed black and solid black lines,
which are denoted by dá ñBob

2 and dá ñBqp
2 , respectively. The

oblique modes dominate until t · s≈ 2, which corresponds to
fe≈ 1.6. After this, the energy in quasiparallel modes
dominates the magnetic fluctuations. The existence of these
oblique and quasiparallel regimes, and the fact that the
transition occurs when fe≈ 1.6, implies that dominance of the
different modes is essentially determined by the value of fe, as
was found in the case of the shearing simulations.
Similarly to what occurs in the shearing case, the oblique

modes in the compressing runs show significant fluctuations in
the electron density ne. This is shown in Figure 12(a), which

Figure 10. We show fields and electron temperature evolutions for the compressing run C2400 (w =q 2400ce
init ) as a function of time tq and of the instantaneous fe.

(a) The solid green line shows the evolution of the energy in the x-component of 〈B〉. The solid red line shows the energy in δB, while the solid black (dashed black)
line shows the contribution to the δB energy by the quasiparallel (oblique) modes. (b) The solid black (solid red) line shows the evolution of the electron temperature
perpendicular (parallel) to 〈B〉. The dashed black (dashed red) line shows the CGL prediction for the perpendicular (parallel) temperature. (c) The black (blue) line
shows the energy in the electromagnetic and electrostatic component of δE.
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shows δne at t · q= 1.5. The fluctuations in the electron density
practically disappear when the quasiparallel modes dominate,
as shown by Figure 12(b), which shows δne at t · q= 3. These
different behaviors of δne suggest the existence of a significant
electrostatic component in the electric field δE when the
oblique modes dominate. This is confirmed by Figure 10(c),
which shows the energy contained in the electric field
fluctuations δE as a function of time, separating it into
electrostatic (dEes

2 ) and electromagnetic (dEem
2 ) components,

which are shown as blue and black lines, respectively. When
the oblique modes dominate (t · q 2), the electric field energy
is dominated by dE ;es

2 after this, it gradually becomes dominated
by dEem

2 . Figure 10(c) also shows that this transition occurs
when the instantaneous fe∼ 1.6–1.7 (the instantaneous fe is
shown by the upper horizontal axis), which is fairly similar to
the transition seen in the case of shearing simulations at
fe∼ 1.2–1.5.

5.2. Electron Acceleration in the Compressing Case

As in the shearing case, PEMZ modes driven by plasma
compression also accelerate electrons, although there are some
significant differences. Figure 13(a) shows ( )g -dn d ln 1e e
for run C2400 at different times t · q. We see the rapid growth
of a nonthermal tail starting at t · q≈ 2. After t · s≈ 2.5, this tail
can be approximated as a power law of index αs≈ 3.7 with a
break at γe− 1∼ 1, where the spectrum becomes significantly
steeper. The fact that most of the nonthermal behavior starts
when the PEMZ modes become dominant (t · q∼ 2) suggests
that as in the shearing case, the nonthermal acceleration is
mainly driven by the PEMZ modes.

One significant difference between the shearing and
compressing case is that the latter gives rise to a softer
nonthermal component in the final electron energy spectrum
than the former (a power law of index αs≈ 3.7 instead of
αs≈ 2.9). This difference is not surprising given that the

overall electron energy gain when fe evolves from fe= 0.53 and
fe≈ 2 is significantly higher for the compressing runs. While in
the shearing case, the final value of Θe,⊥ is about 3 times higher
than its initial value (see the solid black line in Figure 1(b)), in
the compressing case, the final Θe,⊥ is about 10 times higher
than the initial Θe,⊥ (see the solid black line in Figure 10(b)).
Because at the end of both types of simulations Θe,⊥?Θe,∥,
this difference implies that by the end of the compressing runs,
the electrons are significantly hotter than in the shearing runs.
The different electron internal energies may affect the
efficiency with which electrons gain energy from their
interaction with the PEMZ modes, as has been shown by
previous quasilinear theory studies of the stochastic accelera-
tion of electrons by whistler/z modes (Summers et al. 1998).
This implies that shearing and compressing runs that start with
the same electron parameters should not necessarily produce
equally hard nonthermal component in the electron spectrum
after fe has increased from 0.53 to ∼2.
Figure 13(b) shows a numerical convergence test of the final

spectrum at t · q= 3. It compares run C2400 ( D =d x 50e
init ,

Nepc= 200, and =L R 78Le
init ) with a run with D =d x 40e

init

(run C2400a, dotted blue line), a run with Nepc= 100 (run
C2400b, dotted red line), and a run with =L R 39Le

init (run
C2400c, dotted green line). No significant difference can be
seen between the different spectra, with only a slight hardening
for the highest-resolution run C2400, which implies that our
results are reasonably well converged numerically.
The effect of varying w qce

init is investigated in Figure 13(c),
where the final spectra (t · q= 3) are shown for runs with
w =q 300, 600ce

init , 1200, and 2400 (runs C300, C600,
C1200, and C2400, respectively). As w qce

init increases, there
is a hardening of the low-energy part of the nonthermal tail
(0.3 γe− 1 0.8), which converges toward a power-law tail
of index αs≈ 3.7 with little difference between the cases with
w =q 1200ce

init and 2400. Additionally, as w qce
init increases,

there is a decrease in the prominence of a high-energy bump at

Figure 11. For run C2400 (w =q 2400ce
init ), we show the 2D distribution of

δBz at t · q = 1.5 (panel (a)) and t · q = 3 (panel (b)), normalized by B0. The
black arrows show the direction of 〈B〉.

Figure 12. Same as Figure 11, but for the electron density fluctuations δne,
normalized by the average density 〈ne〉.
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γe− 1∼ 1, which essentially disappears for w =q 2400ce
init .

This suggests that the magnetizations w qce
init used in our

compressing runs provide a reasonable approximation to the
expected spectral behavior in realistic flare environments.

6. Possible Role of Collisions

In this work, we have assumed a negligible role of Coulomb
collissions between electrons. We validate this assumption by
calculating the Coulomb collision rate νee for electrons with
temperature Te and density ne (Spitzer 1962),

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )n » -
-

-n T
0.2 s

10 cm 50 MK
, 5ee

e e1
9 3

3 2

where we have assumed a Coulomb logarithm of 20
(appropriate for ne≈ 109 cm−3 and Te≈ 50 MK). Because
for our fiducial parameters ne≈ 109 cm−3 and Te≈ 50 MK, νee
is significantly smaller than the rate at which temperature
anisotropy growth would be driven in contracting loop tops
(s∼ 1 s−1 for B∼ 100 G, as we estimated in Section 4.2), our
collisionless approach is valid in the low-density cases
(ne∼ 108–109 cm−3). However, Equation (5) shows that for
ne 1010 cm−3, collisions could become dominant, probably
reducing the efficiency of the electron acceleration.

7. Summary and Conclusions

Using 2D particle-in-cell plasma simulations, we study the
effect of temperature anisotropy instabilities on electron
acceleration under conditions suitable for ALT regions in solar
flares. In our simulations, we drove the growth of a Te,⊥> Te,∥
anisotropy using the adiabatic invariance of the electron
magnetic moment μe in a growing magnetic field B, which is
achieved by imposing either a shearing or a compressing
plasma motion. In both cases, when the difference between Te,⊥
and Te,∥ is large enough, different plasma modes become
unstable, and through pitch-angle scattering, limit the aniso-
tropy growth. Because B grows continuously in our simula-
tions, our setup drives the instabilities into their nonlinear,
saturated regime, allowing the Te,⊥ and Te,∥ anisotropy to

self-regulate and capturing the long-term effect of the
instabilities on the electron spectra.
Our study considers an initial electron temperature Te≈ 52

MK and an electron density and magnetic field B such that fe
evolves from fe≈ 0.53 to≈ 2. Our results are summarized as
follows:

1. Both in the shearing and compressing runs, electrons are
efficiently accelerated mainly by the inelastic scattering
provided by unstable PEMZ modes, which dominate for
fe 1.2–1.7. This acceleration corresponds to a transfer
of energy from the electrons in the thermal part of the
spectrum to the electrons in the nonthermal tail, with the
PEMZ modes playing the role of carriers of that energy.
When fe 1.2–1.7, pitch-angle scattering is mainly
provided by OQES modes and the nonthermal accelera-
tion is rather inefficient.

2. By the end of the shearing runs, the spectrum contains a
nonthermal tail that can be approximated as a power law
of index αs≈ 2.9, in addition to a high-energy bump that
reaches energies of ∼300 keV. By the end of the
compressing runs, the spectrum has an approximate
power-law tail of index αs≈ 3.7, with a break at ∼500
keV; at higher energies, αs∼ 5 (as shown by the dashed
orange line in Figure 13(a)). This difference between the
shearing and compressing runs is as expected given the
different evolution of electron temperatures in these two
types of runs.

3. Our results are largely independent of the ratios
ωce/s orωce/q when these ratios are sufficiently high. This
implies that our study can be extrapolated to realistic solar
flare conditions, where ωce/s orωce/q should be several
orders of magnitude larger than in our simulations.

In conclusion, our simulations show that under conditions
expected in ALT sources, electron temperature anisotropy
instabilities have the potential of contributing to the accelera-
tion of electrons, probably as a complement to the acceleration
processes expected in reconnection current sheets in solar
flares. Interestingly, the spectral index observed from our
shearing runs (αs≈ 2.9) is within the range of inferred indices
in some ALT sources (e.g., Alexander & Metcalf 1997). Also,

Figure 13. (a) The electron energy spectrum for run S1200 for different values of t · q, where γe is the electron Lorentz factor. The dashed brown line shows a power
law of index αs ≈ 3.7, which at t · q ≈ 2.5–3 resembles the nonthermal tail up to a break at γe ∼ 1. (b) Test of numerical convergence of the final spectrum (t · q = 3).
We compare run C2400 (solid black; D =d x 50e

init , Nepc = 200, =L R 78Le
init ) with runs using (i) a lower time and space resolution D =d x 40e

init (run C2400a,
dotted blue line), (ii) a smaller Nepc = 100 (run C2400b, dotted red line), and (iii) a smaller box size =L R 39Le

init (run C2400c, dotted green line). No significant
difference can be seen between the different spectra, except for the highest-resolution run C2400 having a slightly harder spectrum. (c) The final electron spectra for
runs C2400 (black), C1200 (red), C600(green), and C300 (blue).
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the spectral index obtained from our compressing runs
(αs≈ 3.7) agrees reasonably well with the spectral index
αs≈ 3.6 inferred from multiwavelenth observations of the ALT
source in the X8.2-class solar flare of 2017 September 10
(Chen et al. 2021). In this flare, the power-law tail shows a
break at ∼160 keV, and at higher energies, αs∼ 6. This feature
is qualitatively similar to the spectral breakdown observed in
our compressing runs, although in our simulations, the break
occurs at ∼500 keV, with αs∼ 5 at higher energies.

We point out, however, that the present study is not intended
to make precise predictions regarding observationally inferred
nonthermal electron tails in ALT sources. Indeed, the
anisotropy driving implemented in this work constitutes a
simplified local model for the way the electron velocity
distribution may evolve in ALT sources. A global description
should consider the electron ability to escape the loop-top
region (which may give rise to a loss-cone velocity distribution
with Te,⊥> Te,∥; (e.g., Fleishman & Melnikov 1998), as well as
a more realistic prescription for the magnetic field evolution.
Also, the initial values of fe and Te chosen in this work,
although appropriate for ALT sources, do not represent the
whole range of possible conditions in these environments. For
these reasons, we consider this study a first step in assessing the
possible role of electron temperature anisotropy instabilities in
accelerating electrons in solar flares, under specific initial
conditions and assuming that this anisotropy is driven by either
shearing or compressing plasma motions. We defer the study of
the effect of a wider range of initial plasma conditions as well
as of the global loop dynamics to future works.
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