
1.  The Wind Mission
NASA launched the Wind spacecraft on November 1, 1994. Wind and Polar (Harten & Clark, 1995) were 
part of the stand-alone Global Geospace Science (GGS) Program (Acuña et al., 1995), a subset of the Inter-
national Solar Terrestrial Physics (ISTP) Program (Whipple & Lancaster, 1995). The ISTP Program included 
the additional missions Geotail (Nishida, 1994), the SOlar and Heliospheric Observatory or SoHO (Domingo 
et al., 1995), and Cluster (Escoubet et al., 1997). The objective of the ISTP program was to study the origin of 
solar variability and activity, the transport of manifestations of that activity to the Earth via plasma process-
es, and the cause-and-effect relationships between that time varying energy transport and the near-earth 
environment.

Abstract  The Wind spacecraft, launched on November 1, 1994, is a critical element in NASA’s 
Heliophysics System Observatory (HSO)—a fleet of spacecraft created to understand the dynamics of 
the Sun-Earth system. The combination of its longevity (>25 years in service), its diverse complement of 
instrumentation, and high resolution and accurate measurements has led to it becoming the “standard 
candle” of solar wind measurements. Wind has over 55 selectable public data products with over ∼1,100 
total data variables (including OMNI data products) on SPDF/CDAWeb alone. These data have led 
to paradigm shifting results in studies of statistical solar wind trends, magnetic reconnection, large-
scale solar wind structures, kinetic physics, electromagnetic turbulence, the Van Allen radiation belts, 
coronal mass ejection topology, interplanetary and interstellar dust, the lunar wake, solar radio bursts, 
solar energetic particles, and extreme astrophysical phenomena such as gamma-ray bursts. This review 
introduces the mission and instrument suites then discusses examples of the contributions by Wind to 
these scientific topics that emphasize its importance to both the fields of heliophysics and astrophysics.

Plain Language Summary  The Wind spacecraft is a south ecliptic pointed spinning 
spacecraft that was launched on November 1, 1994. It is equipped with an array of instrument suites 
that measure electric and magnetic fields, electrons from thermal to relativistic energies, protons and 
alpha-particles from thermal to suprathermal energies, and energetic ions from hydrogen to trans-iron 
elements. Wind can also observe remote sources of electromagnetic radiation in the radio and gamma-
ray frequency ranges. This diverse array of instrumentation and numerous near-Earth environments 
explored has allowed researchers to examine such a broad range of research topics including astrophysics, 
turbulence, kinetic physics, magnetic reconnection, interplanetary and interstellar dust, transient solar 
phenomena, and the radiation belts. Examples of the contributions of Wind to the fields of heliophysics 
and astrophysics are reviewed.
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Key Points:
•	 �Wind has made seminal advances 

to the fields of astrophysics, 
turbulence, kinetic physics, 
magnetic reconnection, and the 
radiation belts

•	 �Wind pioneered the study of the 
source and evolution of solar radio 
emissions below 15 MHz

•	 �Wind revolutionized our 
understanding of coronal mass 
ejections, their internal magnetic 
structure, and evolution
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Wind is a spin stabilized spacecraft—spin axis aligned with ecliptic south—with a spin period of ∼3 s. Prior 
to May 2004, Wind performed a series of orbital maneuvers (H. Franz et al., 1998), as shown in Figure 1, 
that led to the spacecraft visiting numerous regions of the near-Earth enviroment. For instance, between 
launch and late 2002 Wind completed ∼67 petal orbits through the magnetosphere and two lunar rolls out 
of the ecliptic in April and May of 1999. Between August 2000 and June 2002 Wind completed four east-west 
prograde 1:3–Lissajous orbits reaching ≳300 RE along the ±Y-GSE direction (Fränz & Harper, 2002). From 
November 2003 to February 2004 Wind performed an excursion to the second Earth-Sun libration point, or 
Lagrange point, called L2. Note that L2 is located ∼233–235 RE downstream of Earth and ∼500 RE down-
stream of the Advanced Composition Explorer (ACE) (Stone et al., 1998). For reference, ACE launched in 
1997 and was designed to study energetic particles and their composition. Unlike Wind, ACE was not de-
signed to study kinetic physics or remote solar and astrophysical phenomena using electric fields.

In May 2004, Wind made its final major orbital maneuver using a lunar gravitational assist to insert it into 
a Lissajous orbit about the first Earth-Sun libration point, labeled L1 by late June 2004. Note that Wind’s L1 
orbit has a ±Y-GSE(±X-GSE) displacement about the sun-Earth line of ∼100 RE(∼35 RE), much larger than 
the other NASA mission at L1, ACE. The ±Z-GSE displacement from the ecliptic plane is ≲ 30 RE for both 
ACE and Wind (For more details, see the Wind Senior Review reports provided at: https://wind.nasa.gov.). 
On June 26, 2020, the Wind flight operations team (FOT) successfully completed the first halo orbit inser-
tion maneuver and the second was successfully completed on August 31, 2020. The third maneuver was 
successfully completed on November 9, 2020. This orbital change was necessary to prevent the spacecraft 
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Figure 1.  Orbital trajectories of the Wind spacecraft in the GSE XY plane from November 1, 1994 to June 1, 2016. 
Colors denote time ranges as indicated. The dashed black circle indicates the Moon’s orbit (Adapted from Figure 1 in 
Malaspina & Wilson, 2016). Note that the orbit has not noticeably changed since June 1, 2016.
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trajectory from entering the solar exclusion zone—area around the solar disk where solar radio emissions 
cause sufficient interference with spacecraft communications to prevent telemetry signal locks. The projec-
tion of the orbit in the ecliptic plane will not noticeably change, however, the out-of-ecliptic projection will 
now be a stationary ellipse centered on the solar disk. The difference between a halo and Lissajous orbit in 
this context is the out of ecliptic position, or z-component. In the latter, the z-component oscillation/orbital 
period is decoupled from the in-plane components. The halo orbit forces all three components to couple so 
the orbit becomes an ellipse tilted relative to the ecliptic plane.

The mission has amassed >5810 refereed publications using Wind data between launch and December 31, 
2020 with a NASA ADS h-index of 148, an i10-index of 3,198, >156,880 citations, and >1,046,210 reads as of 
March 19, 2021. Despite being 25+ years old, the Wind mission still remains active and Wind data continue 
to be relevant as evidenced by the >1,490 refereed publications between January 1, 2017 and December 31, 
2020. Furthermore, Wind data access requests were >10,291,900 between January 1, 2017 and December 
31, 2019 on NASA’s SPDF/CDAWeb or ∼9,400 per day. The only NASA run heliophysics mission currently 
operating that is older is the Voyager mission at >43 years, but both spacecraft have significantly reduced 
capabilities from their original design. Some other missions have been operating >19 years and are still ac-
tive but operating at limited/reduced capacity. Wind is still fully functional and yielding new data products 
due to hardware redundancy and large fuel supplies. Thus, Wind is one of the longest running and most 
productive missions in the Heliophysics System Observatory (HSO).

The article is organized as follows:

•	 �Section 2 reviews the instrument suites, their capabilities, current status, and provides some long-term 
statistics as an illustration of Wind’s capabilities;

•	 �Section 3 provides background information and context for the following subsections that review Wind’s 
scientific advances;

�—	�Section 3.1 reviews Wind’s contribution to gamma ray and solar x-ray astronomy;
�—	�Section 3.2 reviews Wind’s contribution to interstellar and interplanetary dust;
�—	�Section 3.3 reviews Wind’s contribution to our understanding of the lunar wake;
�—	�Section 3.4 reviews Wind’s contribution to magnetic reconnection in Earth’s magnetotail;
�—	�Section 3.5 reviews Wind’s contribution to our understanding of the Earth’s radiation belts;
�—	�Section 3.6 reviews Wind’s contribution to our understanding of the terrestrial foreshock;
�—	�Section 3.7 includes multiple subsections focused on work in the solar wind;

�*	� Section  3.7.1 reviews Wind’s contribution to our understanding of large scale structures and 
magnetic reconnection in the solar wind;

�*	� Section 3.7.2 reviews Wind’s contribution to our understanding of kinetic instabilities and waves 
in the solar wind;

�*	� Section 3.7.3 reviews Wind’s contribution to our understanding of turbulence in the solar wind; 
and

�*	� Section 3.7.4 reviews some long-term statistical studies performed by Wind in the solar wind;
�—	�Section 3.8 includes multiple subsections focused on transient, large-scale, magnetic phenomena;

�*	� Section 3.8.1 reviews Wind’s contribution to our understanding of interplanetary shocks;
�*	� Section 3.8.2 reviews Wind’s contribution to our understanding of interplanetary coronal mass 

ejections; and
�*	� Section 3.8.3 reviews Wind’s contribution to our understanding of stream interaction regions and 

corotating interaction regions;
�—	�Section 3.9 reviews Wind’s contribution to our understanding of solar energetic particles;
�—	�Section 3.10 starts by introducing solar radio bursts and how Wind has made major advances then 

goes into several subsections including;
�*	� Section 3.10.1 reviews Wind’s contribution to our understanding of type II radio bursts;
�*	� Section 3.10.2 reviews Wind’s contribution to our understanding of type III radio bursts;
�*	� Section 3.10.3 reviews Wind’s contribution to our understanding of type III storms; and
�*	� Section 3.10.4 reviews Wind’s contribution to our understanding of type VI radio bursts;

�—	�Section 3.11 discusses Wind’s relationship to the HSO with a focus on Parker Solar Probe and Solar 
Orbiter;
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•	 �Section 4 provides a summary and review of the highlights contained within this review article.
•	 �Appendix A provides definitions of symbols/parameters used in the text;
•	 �Appendix B provides a review of several plasma instabilities and their properties, all of which Wind data 

has been used to investigate;
•	 �Appendix C lists some of the databases relying upon or created by Wind data; and
•	 �Finally we provide Appendix C for the reader to help with the jargon and acronyms/initialisms used 

herein.

2.  Wind Instrument Suites and Long-Term Statistics
The Wind instruments can be divided into two categories: field and particle suites. The field instruments 
measure γ-rays, radio waves, electric fields, and magnetic fields. The particle instruments measure ther-
mal protons, alpha-particles, and electrons in addition to suprathermal and heavy ions (e.g., carbon-ni-
trogen-oxygen, iron, trans-iron). All of the thermal particle instruments (and some of the suprathermal) 
measure particles as functions of energy and solid angle which allows researchers to construct velocity 
distribution functions (VDFs)—particle probability density functions in velocity space. The full 3D VDF 
measurements also allow researchers to calculate velocity moments of the distribution such as number 
density, bulk flow velocity, thermal pressure/temperature, and heat flux. The Wind instrument names and 
acronyms are listed below in Table 1.

It is important to note that unlike most other missions, Wind was designed with significant redundancy 
in its measurements. For instance, there are at least five possible measurements of the solar wind number 
density (two from 3DP, two from SWE, one from WAVES, and one from SMS under certain conditions) and 
prior to 2000 there were two different gamma ray instruments. The MFI comprises of two fluxgate magneto-
meters at different locations on a 12 m boom (one closer at ∼8 m, the other at 12 m) which improves space-
craft noise/artifact removal. There are three separate measurements of protons with energies >50 keV (one 
from 3DP, one from SMS, and one from EPACT). Finally, there are at least three separate measurements of 
heavy ions (i.e., ions more massive than alpha-particles). The instrument capabilities and current status are 
shown in Table 3 (see the Glossary and Acronyms Appendices for definitions).

Most of the instruments continue to be fully functional, aside from temporary data losses due to a command 
and attitude processor (CAP) and tape unit anomaly (both issues were resolved or mitigated). The dates of 
significant spacecraft and instrumental issues are listed in Table 2 for reference.

In this review, we present Wind results for a variety of environments in an effort to highlight a reasonable 
fraction of Wind’s publications. For a broad overview of Wind particles and field observations, Figure 2 
shows 25+ years of observations from MFI and SWE instruments across more than two solar cycles (late cy-
cle 22–cycle 24) indicated by the background color. The temporal resolutions for MFI and SWE are ∼1 min 
(averages) and ∼92 s, respectively. A 2D histogram was constructed from one week bins on the horizontal 
axis while the vertical axis is split up into 300 bins for each panel. The data were artificially clipped when 
creating the 2D histogram to reduce low statistics bins. The range of values used to construct the histograms 
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Abbreviations Instrument name Reference

TGRS Transient Gamma-Ray Spectrometer A. Owens et al. (1995)

KONUS Gamma-Ray Spectrometer Aptekar et al. (1995)

EPACT Energetic Particles: Acceleration, Composition, and Transport von Rosenvinge et al. (1995)

SMS Solar Wind and Suprathermal Ion Composition Experiment Gloeckler et al. (1995)

MFI Magnetic Field Investigation Lepping et al. (1995)

WAVES The Radio and Plasma Wave Investigation Bougeret et al. (1995)

3DP Three-Dimensional Plasma and Energetic Particle Investigation Lin et al. (1995)

SWE Solar Wind Experiment Ogilvie et al. (1995)

Table 1 
Wind Instrument Names
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are 0 ≤ Bo ≤ 300 nT, 0 ≤ ni ≤ 300 cm−3, and 200 ≤ Vi ≤ 1,400 km s−1. The range of values shown on the vertical 
axis are further restricted to focus on the values most commonly observed over the total interval. The color 
bars show the number of counts in each bin where white space represents no counts and red (represents) 
saturation. These calculations include solar wind and magnetospheric intervals. The fluxgate magnetom-
eter had few data gaps during magnetospheric passes. The SWE Faraday cups could not track the bulk ion 
population within the magnetosphere and exhibit sparser coverage than MFI prior to May 2004. Table 4 
provides some one-variable statistics of the data shown in Figure 2 for reference.

These specific data products were chosen primarily for ease of use and that they are some of the most common-
ly utilized data from Wind. Figure 2 shows data taken from every region that Wind has visited in its 25+ years 
of observations from the magnetosphere, radiation belts, lunar environment, bow shock and foreshock regions, 
and solar wind. However, as noted above, the SWE Faraday cups cannot track the bulk of the thermal ion pop-
ulation while inside the magnetosphere because it is designed to measure a cold, fast beam. Thus, there are 
multi-hour data gaps in the SWE Faraday cup data during the >60 perigee passes through the magnetosphere. 
However, again the magnetometer data is perfectly valid. In fact, most of the large Bo values seen prior to 2004 
are from magnetospheric passes. While these data products are not comprehensive of Wind’s capabilities, they 
are useful and illustrative of the longevity and diversity of environments that Wind has sampled.

3.  Selected Science Results From Wind
This section starts by providing the reader with some background and contextual information that will be 
assumed in the subsequent subsections. The following subsections go on to summarize Wind’s contribu-
tions to numerous subfields within space plasma physics and astrophysics. The purpose is to illustrate both 
the breadth and importance of Wind in advancing our understanding of these fields. This section will also 
illustrate one of Wind’s greatest assets; the redundancies of some of its instruments which greatly improve 
the calibration and accuracy of the data products. Note that throughout this review, we intentionally prior-
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Date Part affected Impact

January 19, 1995 GTM1a Failure

October 1995 APE-A/APE-B/IT HVPSb Suffered a loss of gain

April 30, 1997 CAP1c Reed-Solomon encoder failure

December 13, 1997 DTR2d Power supply failure

January 2000 TGRS γ-ray instrument turned off (planned coolant outage)

May 2000 SMS-SWICS Solar wind composition sensor turned off

June 2001 SWE-VEIS Thermal electron detectors HVPS failure

August 2002 SWE-Strahl Reconfigured to recover VEIS functionality

June 2009 SMS DPU Experienced a latch-up reset—MASS acceleration/
deceleration power supply in fixed voltage mode

2010 SMS-MASS Experienced a small degradation in the acceleration/
deceleration power supply

May 19, 2014 3DP-PESA Low Suffered an anomaly that affected only the telemetry HKe data

October 27, 2014 CAP1 Anomaly at ∼21:59:38 GMT

November 7, 2014 CAP2 Set to primary while recovery starts on CAP1

November 26, 2014 SWE Full reset due to CAP1 anomaly

January 30, 2015 CAP1 Fully recovered

April 11, 2016 DTR1 TUA Began experiencing read/write errors (∼1% bit errors)

May 6, 2016 DTR1 TUB FOT sets as primary recorder
aTwo GGS telemetry modules, GTM1 and GTM2. bHigh voltage power supply. cTwo command and attitude processors, CAP1 and CAP2. dTwo digital tape 
recorders, DTR1 and DTR2, each with independent tape units, TUA and TUB. eHouse keeping.

Table 2 
Wind Instrument and Spacecraft Anomalies
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itize Wind-centric references when available to help further illustrate the capabilities and diversity of Wind’s 
accomplishments. These citations are not meant to imply the reference was the first or seminal work on any 
given topic but to keep the focus on accomplishments by the Wind mission. We add notes/discussion, where 
appropriate, to help the reader distinguish between a Wind-centric and original/discovery paper.

Wind was designed to examine space plasmas. A plasma is an ionized gas exhibiting a collective behavior that 
is found in nearly all regions of space. Plasmas are mediated by long-range forces (i.e., electromagnetic) as well.
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Name Type Cadence Range Status & notes

MFI Nominal

3 Bo,j
a ∼11–22 spsb ±4 to ±65,536 nT ±0.001 to ±16 nT

WAVES Nominal

TDS Fast 2 δEj 1.8–120 ksps ∼0.1–300 mV/m ∼80 μV rms

TDS Slow 1 or 3 δEj 0.1–7.5 ksps ∼0.5–300 mV/m ∼300 μV rms

1 or 3 δBj 0.1–7.5 ksps ∼0.25 to ≳30 nT ∼10−9 nT2 Hz−1 @ 100 Hz

TNR 1 δEj ∼1 min ∼4–256 kHz ∼7 nV Hz−1/2

RAD1 2 δEj ∼1 min ∼20–1,040 kHz ∼7 nV Hz−1/2

RAD2 2 δEj ∼1 min ∼1.1–14 MHz ∼7 nV Hz−1/2

3DP Nominal

EESA e− ∼3–22 s ∼0.003–30 keV ∼20% ΔE/Ec, ∼5.6–22.5°

PESA H+, He2+ ∼3–75 s ∼0.003–30 keV ∼20% ΔE/E, ∼5.6–22.5°

SST Foil e− ∼12 s ∼25–400 keV ∼30% ΔE/E, ≳ 22.5°

SST Open H+ ∼12 s ∼25–6,000 keV ∼30% ΔE/E, ≳ 22.5°

SWE VEIS Off,

Strahl Reconf.

FCs H+, He2+ ∼92 s ∼0.15–8 keV ∼6.5% ΔE/E

Strahl e− ∼12 s ∼0.005–5 keV ∼3% ΔE/E

∼3 ° × 30 °

SMS SWICS Off,

MASS Reduced

STICS H–Fe ≳3 min ∼8–226 keV/e ∼5% ΔE/E, ∼4 ° × 150 °

1–60 amu/e ∼12% ΔM/Md

EPACT IT off,

APE Reduced

LEMT He–Fe ≳5–60 min ∼2–12 MeV/n ≳20% ΔE/E

∼2–90 Z ≳2% ΔQ/Qe

STEP H–Fe ≳10 min ∼0.02–2.56 MeV/n ≳30% ΔE/E

∼17 ° × 44 °

Nominal

KONUS photons ≳2 ms ∼0.02–15 MeV ≳5% ΔE/E

≳3 s ∼0.02–1.5 MeV Background Mode

Off (out of coolant)

TGRS photons ≳62 μs ∼0.025–8.2 MeV ∼3 keV @ 1 MeV

eff. ∼43% @ 511 keV
aThree magnetic field vector components. bSamples per second. cNormalized energy resolution. dNormalized mass resolution. eNormalized charge resolution.

Table 3 
Operational Instruments on Wind
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The near-Earth environment (see cartoon in Figure 3) is comprised of a neutral atmosphere surrounded 
by a plasma (e.g., see review by Borovsky et al., 2020). The transition between the two is not abrupt. The 
neutral atmosphere consists of the troposphere, the stratosphere, the mesosphere, and a portion of the ther-
mosphere. In the thermosphere, temperature increases as a function of altitude and as a function of extreme 
ultraviolet radiation. The ultraviolet radiation ionizes neutral constituents and gives rise to the ionosphere, 
a collisionally mediated, weakly ionized plasma. Above the ionosphere is the plasmasphere surrounded by 
the magnetosphere which is bounded by the magnetopause. Within the magnetosphere are the Van Allen 
radiation belts, magnetotail, and several other regions. The magnetosheath separates the magnetopause 
from the bow shock, one of the largest features of the near-Earth environment. The bow shock is the out-
ermost boundary between the magnetosphere and the interplanetary medium (IPM) and solar wind. The 
magnetopause forms due to the Earth’s magnetic field acting as an obstacle to the supersonic flow of the 
solar wind. The plasma compresses on the sunward side, piling up leading to a nonlinearly steepening fast/
magnetosonic wave. Eventually this steepening wave reaches a balance between nonlinear steepening and 
energy dissipation, at which point the bow shock forms.

Plasmas are ordered as collisionless, weakly collisional, collisional, and 
strongly collisional. A weakly collisional system is one in which the col-
lision rate is small but not completely negligible compared to other rel-
evant time scales (e.g., cyclotron frequency). The solar wind is an exam-
ple of a weakly collisional, magnetized plasma that is constantly emitted 
from the Sun with variable speeds from ∼280 km/s to >800 km/s (e.g., 
see Figure 2) and comprised of ∼95% protons, ≳4% alpha-particles, and 
electrons (e.g., see review by Verscharen, Klein, & Maruca, 2019). In the 
solar wind near Earth, one Debye length is ∼9  m while the scattering 
cross-sectional radius for neutral particles can be roughly six orders of 
magnitude smaller. Further, the transit time from the sun to the Earth 
for a typical solar wind parcel is ∼3–4 days while the Coulomb collision 
period between particles is typically ≳0.5–1.0 days (e.g., see discussion in 
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Figure 2.  A 2D histogram representation of 25+ years of Wind observations. The panels are as follows from top to 
bottom: quasi-static magnetic field magnitude [nT], total ion number density [cm−3], and total ion bulk flow speed 
[km/s]. The shading corresponds to solar cycles 22 (green), 23 (blue), and 24 (magenta). The color bars indicate the 
counts in each bin (see text for details).
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Solar cycle ni [cm−3]a Vi [km s−1] Bo [nT]

Overallb 1.70–16.8, ∼5.24 304–633, ∼405 2.42–12.0, ∼5.04

22 End 2.65–20.2, ∼7.42 310–637, ∼398 2.45–11.3, ∼5.01

23 All 1.57–17.0, ∼5.11 309–652, ∼418 2.55–13.7, ∼5.46

24 All 1.75–15.5, ∼5.11 299–605, ∼392 2.30–10.2, ∼4.62

aX5%–X95%, X  (where Xy% is the yth percentile and X  is the median). 
bMagnetospheric data are not included in the particle stats as SWE cannot 
measure magnetospheric ions.

Table 4 
Solar Wind Statistics
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Wilson et al., 2018, and references therein). Many plasmas, like that of 
the solar wind, are not in thermodynamic or even thermal equilibrium. 
That is, the temperatures of species s′ and s are not equal or   /s s tot

T T  
1 for s′ ≠ s (see Appendix A for symbol definitions) and there is an ubiq-
uitous presence of finite heat fluxes, that is, nonequilibrium particle dis-
tributions. The former negates thermal equilibrium and both the former 
and latter negate thermodynamic equilibrium.

The collisionless limit is obviously that which ignores all Coulomb colli-
sions on the time scales of interest. Shock waves in most space plasma en-
vironments are considered collisionless because the gradient scale length 
of the ramp tends to fall between the electron and ion inertial lengths 
(i.e., ∼1–100 km near Earth) while the Coulomb collision mean free path 
of protons can be ∼1 AU near-Earth (e.g., Wilson et al., 2018). Thus, they 
are called collisionless shocks.

A shock is a sudden transition between supersonic and subsonic flows 
and is characterized by an abrupt change in pressure, temperature, and 
density in the medium (e.g., see discussion in Krasnoselskikh et al., 2002; 
Shu,  1992; Wilson,  2016; Wilson et  al.,  2017, and references therein). 
Shock waves can arise from the nonlinear steepening of compressional 

waves when the steepening is balanced by some form of irreversible energy dissipation (e.g., see discus-
sion in Shu, 1992). Despite their collisionless nature, shock waves can and do form in the solar wind. This 
can result either from some magnetic disturbance propagating faster than the supersonic solar wind (e.g., 
solar transient eruptions) or said disturbance standing against the incident solar wind (e.g., planetary bow 
shocks). A shock will arise if the difference in speed exceeds the fast magnetosonic speed (see Appendix A 
for definitions), that is, the relevant speed of communication in the medium.

Collisionless shock waves are distinguished by their Mach number (Mf), shock normal angle – the angle 
between the upstream average magnetic field vector and shock normal unit vector, θBn (e.g., quasi-perpen-
dicular shocks satisfy θBn ≥ 45°), and upstream averaged plasma beta  tot up. The asymmetric ram pressure/
forces due to the supersonic solar wind combined with plasma coupling to the fields causes the Earth’s 
magnetic dipole field to be “dragged out” into a tail with the appearance of something akin to a wind sock. 
On the sunward (upstream) side of the bow shock, this region of the quasi-parallel portion of the bow 
shock is called the ion foreshock (see Section 3.6 and Figure 7) and is filled with multiple backstreaming 
ion populations and energetic electrons (e.g., see discussion in Wilson, 2016; Wilson et al., 2016, and refer-
ences therein). The interplanetary magnetic field (IMF) can be visualized as open solar magnetic field lines 
approaching Earth at ∼45° to the Earth-Sun direction. The radial Sun-Earth line is along the horizontal in 
Figure 3 and the plane shown is orthogonal to the ecliptic.

A unique attribute of Wind for solar wind studies is that it is the only near-Earth spacecraft that consistently 
measures the “plasma line” (also known as the upper hybrid line) in the solar wind, which is primarily de-
pendent upon the total electron density. The upper hybrid line is a thermal emission that occurs at the upper 
hybrid frequency, fuh (see Appendix A for symbol definitions), and can be measured because the WAVES 
antennae are longer than the local Debye length, λDe (see Table 6). The plasma frequency is so much larger 
than the cyclotron frequency in the solar wind, that is, fpe ≫ fce, that the following is almost always satisfied 
fuh ∼ fpe. Even without this approximation, the spacecraft accurately measures the magnetic field so one can 
invert the observed upper hybrid line frequency to solve for the total electron density. This gives the only 
unambiguous measurement of the total electron density from any instrument and is used to calibrate the 
thermal particle detectors not just on Wind, but other spacecraft as well (e.g., THEMIS plasma instruments 
McFadden, Carlson, et al., 2008; McFadden, Phan, et al., 2008).

To understand charged particle motion, free energy, and instabilities we first introduce the concepts of 
particle VDFs. A VDF is a seven dimensional function of three spatial components, three velocity (or mo-
mentum) components, and one temporal component. Generally, spacecraft measure a VDF at a given time 
and location, so the VDF reduces to a three dimensional function of the 3-vector velocity (or momentum). 
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Figure 3.  Cartoon of the Earth’s global geospace environment (not to 
scale) shown in the plane orthogonal to the ecliptic.
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Generically speaking, the VDF is a probability density function of velocity for a particle ensemble. An exam-
ple VDF is the well-known Maxwell-Boltzmann distribution, or Maxwellian (for more examples see Wilson 
et al., 2019b, and references therein).

Free energy in the context of space plasmas refers to non-Maxwellian features in a VDF such as tempera-
ture anisotropies, secondary beams, excess skewness (i.e., heat flux), etc. In general, any deviation from an 
isotropic Maxwellian is a form of free energy but the magnitude of the deviation is critical for determining 
whether or how that energy will be transformed. This definition of free energy derives from the assumption 
that an isotropic Maxwellian is the global, maximum entropy distribution.

A plasma instability is the mechanism through which a plasma converts some particle free energy source 
into electromagnetic fluctuations. Note that the use of both kinetic and plasma instability will occur 
throughout. The former specifically refers to features in the VDFs while the latter also encompasses 
fluid-like instabilities. All thermal plasmas contain pre-existing thermal fluctuations at the natural fre-
quencies of the system, often called normal modes (e.g., see discussion in Gary, 1993; Stix, 1992). The 
properties of these normal modes depend on the background plasma parameters (e.g., magnetic field 
strength, density, temperature, etc.). The normal modes determine which possible thermal fluctuations 
can absorb the free energy from the particle populations, if present, and grow over time above the thermal 
amplitude level. In some ways, an instability is like a “walkie talkie” between the source (particle free en-
ergy) and receiver (electromagnetic fluctuations). In this analogy, the transmitting walkie talkie channel 
frequency is analogous to the pre-existing normal modes of the system while the receiving walkie talkie 
is analogous to the electromagnetic modes. For more details and specific examples of instabilities, see 
Appendix B.

Another topic of considerable interest in plasma physics is magnetic reconnection. Magnetic reconnection 
is a universal plasma process by which a change in the magnetic field topology results in the destruc-
tion of magnetic flux and the conversion of electromagnetic energy to particle kinetic energy (see Hesse & 
Cassak, 2020, for a detailed review). Magnetic reconnection has been known to be an important particle 
energization mechanism in astrophysical plasmas for decades. It occurs in response to the compression of 
regions with oppositely directed magnetic fields. As the oppositely directed magnetic fields slowly converge, 
a current sheet begins to form creating a spatially thin region called the diffusion region (Sonnerup, 1979). 
Traditionally this is associated with a so called “X-line” or place where the magnetic field lines trace out 
an X (e.g., see the gray boxes in the cartoon in Figure 6). The diffusion region is where magnetic flux is 
destroyed and electromagnetic energy starts to convert to particle kinetic energy forming two oppositely 
directed, outflowing jets, called “reconnection exhausts.”

When the magnetic field changes on shorter spatial scales than the particles can respond (i.e., they can no 
longer follow a single magnetic field line), they are said to be demagnetized. The magnetic reconnection 
process starts in the diffusion region, which is characterized by the presence of dissipative electric fields 
on small length scales (i.e., smaller than the particle gyroradii and/or inertial length). There are in fact 
two diffusion regions, one for the electrons and one for the ions. When inside of the ion diffusion region, 
thermal ions become demagnetized but electrons can still remain magnetized. However, inside the electron 
diffusion region, both particle populations become demagnetized. The presence of dissipative fields allows 
changes in magnetic field topology by redistributing energy between fields and particles resulting in large 
scale (much larger than ion gyroradii and/or inertial lengths) consequences.

In the following subsections we highlight selected scientific discoveries and/or advances made using Wind 
observations.

3.1.  Remote Astrophysics

3.1.1.  Gamma Ray Bursts

Cosmic gamma ray bursts (GRBs) are the brightest electromagnetic events known to occur in the universe 
and are triggered by the collapse of massive stars (long GRBs) or the coalescence of compact objects (short 
GRBs). Even though the call for proposals to the ISTP program had already taken place, the discovery of 
gamma ray bursts in the 1970s by Klebesadel et al. (1973) prompted the addition of two gamma ray detectors 
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to the Wind instrument payload, the KONUS (Aptekar et al., 1995) and 
TGRS (A. Owens et al., 1995) experiments. The KONUS instrument, also 
called KONUS-W, is the first Russian instrument to fly on a US spacecraft. 
KONUS is the most prolific detector in the Interplanetary Network (IPN, 
http://ssl.berkeley.edu/ipn3/index.html), which contains gamma-ray 
detectors from a variety of telescopes, including Swift and Fermi (Cline 
et al., 2001; Hurley, Cline, et al., 2003; Hurley, Atteia, et al., 2003; Hurley 
et al., 2011), maintained by Dr. Kevin Hurley at UC Berkeley. KONUS is 
also a member of the Gamma-ray Burst Coordinates Network or GCN 
(https://gcn.gsfc.nasa.gov), maintained by Dr. Scott Barthelmy at NASA’s 
Goddard Space Flight Center.

By studying GRBs, we can learn about the formation of large-scale struc-
tures in the early universe and present-day processes (Fishman,  1995; 
Fishman & Meegan,  1995). GRBs consist of an initial flash of gam-
ma-rays lasting from tens of milliseconds to minutes followed by a longer 
duration afterglow at radio and optical wavelengths. KONUS’s combi-
nation of broad energy range, longevity, and all-sky coverage make it a 

unique resource for many studies (e.g., Tsvetkova et al., 2017). For a particularly bright short event, Guiriec 
et al. (2017) find unique evidence of a photospheric jet by comparing simultaneous KONUS and Fermi ob-
servations. In 2019, the gravitational wave facilities Advanced LIGO and Virgo provided evidence of short 
GRBs associated with both binary neutron star mergers and the emission of gravitational radiation (Abbott 
et al., 2019). The authors also cite Wind data from the Interplanetary Network in their study. As of 2020, 300 
bursts per year are detected by KONUS (roughly 6000 to date). Figure 4 shows the number of GRBs detected 
by KONUS between 1994 and 2019 (D. Frederiks et al., 2019).

3.1.2.  Soft Gamma Repeaters (Magnetars)

Soft gamma repeaters (SGRs), also called magnetars, are strongly magnetized Galactic neutron stars with 
surface magnetic fields up to 1014 G. Magnetars emit large bursts of X-rays and gamma-rays at irregular 
intervals (Aptekar et al., 2002; Kouveliotou et al., 1999). Approximately 30 magnetars have been identified. 
When these sources become active, they emit several up to several hundreds of bursts within a timeframe 
of days to months.

Magnetar giant flares (GFs) are of greater apparent intensity than GRBs with an average occurrence rate of 
once per decade (Frederiks et al., 2007; Hurley et al., 2010). Only a handful of GFs have been detected. The 
intensity of a single event is sufficient to create ionospheric disturbances. KONUS has detected extragalactic 
GFs from the Andromeda and the M81 group (Frederiks et al., 2007; Mazets et al., 2008) and more recently 
identified a GF from the Sculptor galaxy (Roberts et al., 2021; Svinkin et al., 2021).

Fast radio bursts (FRBs) are bright, millisecond-scale radio flashes whose origins are a subject of debate 
(e.g., see review by Petroff et al., 2019). Magnetars have been suggested as the most promising candidates 
for fast radio burst progenitors owing to their energetics and high X-ray flaring activity, but proof of this 
association has been elusive. KONUS detected a burst of X- and gamma-rays on April 28, 2020 (Bochenek 
et al., 2020; CHIME/FRB Collaboration et al., 2020; Ridnaia et al., 2020) which was temporally coincident 
with a bright, two-peak fast radio burst; the light curves of the radio and X-ray bursts were remarkably 
similar. The source was the Galactic magnetar SGR 1935+2154, which had recently entered an active state. 
This was the first simultaneous detection of a fast radio burst from a Galactic magnetar and its high-energy 
counterpart, and it provides the long-sought evidence of a magnetar origin for at least some FRBs.

3.1.3.  Solar Flares

During its more than 25-year-long history, the KONUS instrument onboard Wind has accumulated an 
unique volume of solar flare observations in the hard X-ray and gamma ray range. Data on solar flares 
recorded by KONUS in the triggered mode are published online (http://www.ioffe.ru/LEA/kwsun/) from 
1994 to the present along with their GOES classification (Pal’shin et al., 2014). This database (see Table C1 
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Figure 4.  KONUS statistics of various astrophysical events emitting 
gamma rays. The vertical axis is number of events. The color code 
corresponds to the type of burst trigger for the instrument, which are 
defined as: GRB is gamma ray burst (≳2740, magenta); sGRB is short 
gamma ray burst (∼500, purple); SGR is soft gamma repeater (∼270, 
green); Flare is solar flare (≳1040, yellow); and Part is particle event-
induced (taken from Figure 1 in D. Frederiks et al., 2019).
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in Appendix C) provides light curves with high temporal resolution (up to 16 ms) and energy spectra over 
a wide energy range (now ∼20 keV to ∼15 MeV). The high time resolution of KONUS allows for the study 
of fine temporal structure in solar flares (e.g., Lysenko et al., 2018). The KONUS energy band covers the re-
gion of nonthermal emission due to accelerated electrons and ions in solar flares, which allows probing the 
source of their acceleration (e.g., Glesener & Fleishman, 2018). Thus, the Wind KONUS solar flare database 
offers a new, unique set of data for solar researchers.

3.2.  Interstellar and Interplanetary Dust

The interplanetary and interstellar media are full of small debris ranging in size from millimeters to nano-
meters called dust. Dust is important as it can readily transport mass, momentum, and energy throughout 
the heliosphere but the sources, sinks, and transport are not well understood. Most of this dust is moving at 
large speeds relative to spacecraft, resulting in hypervelocity impacts when dust grains collide with space-
craft. Such collisions convert enough kinetic energy to ablate and ionize small portions of the spacecraft 
causing a plasma plume to form. This abrupt ionization may be detected with high time resolution electric 
field instruments, as the plasma plume and ejected material affects the electric fields near the spacecraft 
(e.g., see review by Sterken et al., 2019). Although the original Wind mission objectives did not include 
the detection of dust, the Wind/WAVES TDS receiver has accumulated >100,000 identified dust impacts 
(Malaspina & Wilson, 2016).

Researchers determined that the signals corresponded to micron-sized (i.e., dust grains ∼1  μm in size) 
interplanetary dust (IPD) and interstellar dust (ISD) (Malaspina et al., 2014; Sterken et al., 2019). Wood 
et al. (2015) then determined the longitudinal direction of ISD using spectroscopic measurements from Ul-
ysses, which was orbiting the solar poles. Although dust had been detected previously using the same meth-
od on other spacecraft (Malaspina et al., 2015; Mann et al., 2019; Sterken et al., 2019), Wood et al. (2015) 
presented the first antenna triangulations of ISD with the Wind and Ulysses spacecraft across an entire solar 
cycle. They utilized the yearly modulation of dust count rates to separate ISD from IPD. The authors show 
an unexplained source of variability in 2005 on a timescale of less than a year. This temporal variability is 
interesting because it deviates from the expected temporal variability of the dust count rates and remains 

unexplained.

Subsequent work led to the creation of a Wind dust impact database 
(Malaspina & Wilson,  2016), comprised of >107,000 impacts, which is 
publicly available through SPDF CDAWeb (see Table C1 in Appendix C). 
The large statistics allowed researchers to determine that Wind does not 
respond to dust grains with sizes ≪0.1 μm, the so called nanodust (Kel-
logg, 2017; Kellogg et al., 2016, 2018; Malaspina et al., 2014; Malaspina & 
Wilson, 2016; Sterken et al., 2019).

Figure 5 shows the counting statistics for TDS events and dust impacts 
observed by the Wind TDS receiver. The obvious annual variation in dust 
impacts seen in the bottom two panels is primarily due to ISD. The rea-
son is that for half of the year, Wind is moving approximately anti-par-
allel to the flow of ISD through the solar system. The difference in flow 
speed of the ISD in Wind’s reference frame varies from ∼4–56 km/s, thus 
leading to an annual variation in the counting rates (i.e., higher impact 
speeds produces larger electric field amplitudes and thus more dust ob-
servations). This annual variation has been reported in multiple studies 
(Kellogg et al., 2016; Malaspina et al., 2014; Malaspina & Wilson, 2016; 
Wood et al., 2015).

The Wind dust impact database presents exciting opportunities for inves-
tigating heliospheric dust dynamics (Sterken et al., 2019) and statistical 
studies of the dependence on large-scale, transient magnetic phenomena 
(see Sections 3.8.2 and 3.8.3). The relevance of dust has increased in re-
cent years with the recognition that it plays an important role in numer-
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Figure 5.  Plot of the entire Wind mission showing the daily totals. In 
each panel the dark blue and red lines represent the actual and 10-day 
smoothed counts, respectively. The panels shown are the following (in 
order from top-to-bottom): daily total number of TDS events; number 
of dust impacts observed on the x-antenna; and number of dust impacts 
observed on the y-antenna. The two vertical green lines define the duration 
of the Wind mission at the time of creation of this figure (i.e., January 
2017). The two vertical cyan lines define the times when the x-antenna 
was cut apparently by dust impacts (Adapted from Figures 5 and 6 in 
Malaspina & Wilson, 2016).
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ous ways from mass, momentum, and energy transport to physical dam-
age to spacecraft (e.g., cutting of wire antenna). For instance, one of the 
wire antennas, that form the electric field probes for Wind/WAVES, was 
cut twice by what is suspected to be dust impacts. The first occurrence 
happened on August 3, 2000 and the second time on September 24, 2002.

Finally, a more recent development arose when researchers using an 
Earth-observing spacecraft, Aeronomy of Ice in the Mesosphere (AIM) 
(Russell et  al.,  2009), found some variations in meteoric smoke—the 
product of meteoroid ablation (at ∼75–110 km altitude) in Earth’s mes-
osphere. These observations were made by the Solar Occultation For 
Ice Experiment (SOFIE) (Gordley et al., 2009). Although the mission is 
cloud-focused, cloud science overlaps with studies of dust, geomagnet-
ic activity, and solar cycles (Hervig et al.,  2017, 2019; Liu et al.,  2018). 
Interestingly, the temporal variations in meteoric smoke are consistent 
with the dust count rates observed by Wind, providing a new avenue of 
research and future collaborations.

3.3.  Lunar Wake Studies

Because the moon is relatively nonconducting, the interplanetary magnetic field passes through the obsta-
cle while solar wind ions and electrons only interact with the lunar surface. Wind offered the first modern 
glimpses into the lunar wake in 1994 - The first lunar wake observations by the Explorer 35 and Apollo mis-
sions occurred at around 2 lunar radii from the lunar surface (Ness, 1972) - giving inspiration to new simula-
tion efforts focusing on kinetic phenomena (e.g., see historical discussion in review by Halekas et al., 2015). 
Wind completed 10 wake crossings before entering a Lissajous orbit at L1 in 2004. Table 5 lists all crossings 
of the lunar optical wake (Ogilvie & Desch, 1997).

The lunar environment is an exciting laboratory for plasma physics (Halekas, Angelopoulos, et al., 2011; 
Halekas, Saito, et al., 2011; Halekas et al., 2015), comparative planetology, solar system formation, and as-
trochemistry. As a result, the near-moon plasma environment has a low-density downstream cavity called 
a wake. Wind contributed the first wake measurements more than two lunar radii or RL from the surface 
(Bosqued  et  al.,  1996; Farrell  et  al.,  1998; Owen  et  al.,  1996). Ogilvie  et  al. (1996) presented wake field 
and particle observations which contradicted the previously accepted theory of a magnetohydrodynamic 
(MHD) wake flow. The spatial scale of magnetic field perturbations near the wake should be much larger 
than an electron orbit while the ions are on a ballistic trajectory interacting with an unmagnetized body. 
Therefore, the ions and electrons could be treated like a fluid around such an obstacle. This is why some of 
the original work suggested an MHD model approach (Farrell et al., 1997; Ogilvie et al., 1996).

This MHD model predicted that the lunar wake would extend to no more than four lunar radii or ∼4 RL 
(Bosqued et al., 1996; Farrell et al., 1998; Owen et al., 1996). However, Wind still observed a wake at ∼6 RL 
(Bosqued et al., 1996; Farrell et al., 1996; Kellogg, Goetz, et al., 1996; Ogilvie et al., 1996; Owen et al., 1996). 
The alignment of the lunar wake with optical shadow helps us understand the complex ion and electron 
flow patterns which act to replenish the low-density cavity (Clack et al., 2004). In the lunar wake, Wind ob-
served oppositely directed ion beam distributions (Farrell et al., 1997; Ogilvie et al., 1996). These beams are a 
response to asymmetric ambipolar diffusion. Thus, Wind provided paradigm shifting observations showing 
us that the plasma-moon interaction is kinetic, not fluid, in nature.

3.4.  Reconnection in the Magnetotail

Magnetic reconnection has been known to be an important particle energization mechanism in astrophys-
ical plasmas for decades (see Hesse & Cassak, 2020, for a detailed review). This section describes magnetic 
reconnection discoveries made using Wind data in the magnetotail – the region anti-sunward of Earth 
where Earth’s magnetic dipole field lines are stretched and compressed due to the solar wind.
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Start time [UTC] End time [UTC]

1994-12-01/15:04:07 1994-12-01/15:29:10

1994-12-27/14:36:30 1994-12-27/15:22:36

1996-03-24/05:19:43 1996-03-24/06:24:50

1996-11-13/01:43:16 1996-11-13/03:07:25

1999-04-01/20:38:02 1999-04-01/20:53:04

1999-05-12/20:52:12 1999-05-12/21:04:14

2000-08-19/15:35:45 2000-08-19/16:51:53

2001-12-05/16:48:53 2001-12-05/17:54:00

2002-07-18/17:46:39 2002-07-18/18:42:45

2002-11-30/11:30:28 2002-11-30/12:16:33

Table 5 
Optical Lunar Wake Transits by Wind
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Although early observations associated with reconnection in space provided evidence of the reconnection 
process through downstream outflows identified as exhausts, the diffusion region was not observed directly 
(e.g., Paschmann et al., 1979). The observational discovery of the magnetic reconnection (ion) diffusion re-
gion was made in Earth’s magnetotail at ∼60 RE by Wind (Øieroset et al., 2001). The primary evidence of re-
connection presented in this study was the quadrupolar (Hall) magnetic field around an X-line crossing (see 
Figure 6), which caused the ions to become demagnetized as they enter the diffusion region. In the same 
reconnection event, Wind found direct evidence that reconnection can accelerate electrons to suprathermal 
energies, up to 300 keV (Øieroset et al., 2002). The Wind findings led to new ideas of particle energization in 
magnetic reconnection which were developed to explain the observed suprathermal electron energization. 
In particular, Drake et al. (2006) suggested that electrons could gain kinetic energy by reflecting from the 
ends of the contracting “magnetic islands” that form in the current sheet as reconnection proceeds. The 
mechanism is analogous to the increase of energy of a ball reflecting between two converging walls – the 
ball gains energy with each bounce. The repetitive interaction of electrons with many magnetic islands 
allows a large number of electrons to be efficiently accelerated to high energy.

Raj et al. (2002) found a clear dawn-dusk asymmetry in the occurrence of magnetic reconnection in Wind 
observations in Earth’s magnetotail. Reconnection occurred preferentially on the dusk side, which links tail 
reconnection to nightside auroral intensifications (these are known to be strongly skewed toward the dusk/
pre-midnight sector). The Wind discovery led to a number of studies trying to explain the source of the 
asymmetry, including ionospheric control of tail reconnection Lotko et al. (2014).

3.5.  The Radiation Belts

Wind studies of large amplitude whistler waves in the terrestrial radiation belts (Kellogg et al., 2011; Ker-
sten et al., 2011; Wilson III et al., 2011) have led to a series of new theoretical analyses based upon the new, 
much larger wave amplitude estimates (note these were originally discovered by Cattell et al., 2008, using 
STEREO observations). A comprehensive review of large amplitude whistler mode waves in the radiation 
belts can be found in the review by Cattell et al. (2012). Whistler mode waves are right-hand polarized (with 
respect to quasi-static magnetic field), electromagnetic emissions that are found in virtually all regions of 
space (e.g., see discussions in Cattell et al., 2012; Wilson, 2016; Wilson, Koval, Szabo, et al., 2013, and refer-
ences therein). In the context of the radiation belts, the words whistler mode wave includes both chorus-like 
and hiss-like emissions. See the Glossary and Appendix B for more details.
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Figure 6.  Wind encounter with the magnetic reconnection ion diffusion region in Earth’s magnetotail, showing 
(right) the out-of-plane Hall magnetic field By and the reversal of the reconnection reconnection outflow jets across the 
reconnection region. The simulation panel shows the normalized Hall By with Wind’s trajectory overlaid (red dashed 
line). Note that the polarity in the simulation is different from the which is a consequence of the coordinate basis 
(Modified from Figures 1 and 2 in Øieroset et al., 2001).
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The peak-to-peak electric and magnetic field amplitudes of whistler mode waves can exceed 200 mV/m and 
8 nT, respectively (Kellogg et al., 2011; Wilson et al., 2011). These values are >10 times the magnitude of pre-
vious observations and call into question the assumptions required in quasi-linear diffusion models that are 
based upon much smaller wave amplitudes (e.g., see review by Cattell et al., 2012). For each magnetospheric 
pass examined that traversed the radiation belts, Wilson et al. (2011) found that large amplitude waves were 
present in the radiation belts. Kellogg et al.  (2011) used Wind to provide some of the first evidence that 
these waves were being excited by electrons with energies below ∼30 keV – previous work suggested that 
energies of at least 100 keV were necessary to excite whistler mode waves in the radiation belts. Kellogg 
et al. (2011) also showed evidence of electron beam-driven electrostatic solitary waves in conjunction with 
large amplitude whistler mode waves. This result suggested that the energy budget and particle dynamics 
of the radiation belts are not as well understood as previously thought.

Wilson et al. (2011) showed that the whistler mode wave amplitudes had a weak positive correlation with 
the auroral electrojet index or AE-Index – a set of space weather numerical values designed to provide 
a global, quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric cur-
rents. The large amplitude whistler mode waves in this study were concurrent with earthward injections of 
∼30–300 keV electrons from the geomagnetic tail. Wilson et al. (2011) also obtained a lower bound on the 
Poynting flux of one wave, which was ≳300 μW m−2, or nearly four orders of magnitude larger than any pre-
vious measurement for radiation belt whistler mode waves. A previous statistical survey of whistler mode 
chorus Poynting flux found typical amplitudes of ∼0.05 μW m−2 (Santolík et al., 2010). The authors used 
this value to estimate the time scale for filling a ∼3 RE long, field-aligned column flux tube in the radiation 
belt with ∼1 MeV electrons energized from typical plasma sheet energies (i.e., ∼200–104 eV). Assuming a 1% 
efficiency Santolík et al. (2010) estimated that chorus could fill the outer radiation belt in a matter of days, 
consistent with the then standard assumption of the radiation belt refilling time scale of ∼1 day (Horne 
et al., 2005). For comparison, using the ≳300 μW m−2 Wind observation and a 1% efficiency, the time scale 
decreases to ∼33 s providing further evidence that the energy budget and particle dynamics of the radiation 
belts were not as well understood as previously thought.

These Wind studies also helped to define some of the primary science goals for the electromagnetic fields 
instruments (Wygant et al., 2013) on NASA’s Van Allen Probes, which were launched in 2012. The Wind-es-
timated timescale of sub-minute energization was considered much too short at the time of publication but 
later studies using Van Allen Probes (Agapitov et al., 2019) reduced the upper limit to less than ∼3 h from the 
previous ∼12–24 h time scales. Note these time scales are for electrons below ∼1 MeV. Changes in electrons 
at or above ∼1 MeV are still in the ∼12 h time range. Wind also serves as an upstream monitor for radiation 
belt studies by the Van Allen Probes and other magnetospheric missions (Borovsky & Denton, 2009; Halford 
et al., 2015; Jaynes et al., 2015; Li et al., 2015; Mann et al., 2016; Schiller et al., 2014; Turner et al., 2014).

In summary, Wind observations have led to paradigm shifting results in radiation belt studies specifically on 
particle energization and loss, modeling, and wave generation.

3.6.  The Ion Foreshock

In this section, we discuss the advances made by Wind studies to our understanding of the terrestrial fore-
shock – the region magnetically connected to the quasi-parallel shock. Studies using Wind have shown the 
foreshock is far larger in spatial extent than previously thought, giving us insight into new transient, elec-
tromagnetic phenomena, and showed that foreshock transients can locally generate their own miniature 
foreshocks. Figure 7 shows a cartoon example of a possible foreshock scenario illustrating the multiple 
particle population regions and the presence of large amplitude electromagnetic fluctuations/disturbances 
(see Wilson, 2016, for detailed review of the foreshock).

The spatial extent of shock-reflected ions defines the foreshock boundaries. Prior to Wind, the most distant 
foreshock measurement was made by ISEE-3 at 200 RE, Wind’s predecessor (Scholer et al., 1980). Using 
Wind, Berdichevsky et al. (1999) discovered that the ion foreshock could extend to ∼250 RE from Earth. Us-
ing a combination of Wind and STEREO observations, Desai et al. (2008) subsequently found ion foreshock 
particles > 3,000 RE upstream.
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In addition to redefining the extent of the foreshock, Wind observations also showed that the high en-
ergy cutoff for energetic ions is higher upstream of the quasi-perpendicular bow shock (Meziane 
et al., 1999, 2002, 2003) rather than the quasi-parallel bow shock, in contrast with theory (Caprioli & Spitk-
ovsky, 2014; Park et al., 2015). Upstream of the quasi-parallel bow shock the highest energy ions only reach 
∼330 keV while upstream of the quasi-perpendicular bow shock the highest energy ions can reach ∼2 MeV 
through shock drift and/or diffusive shock acceleration. These energetic ions were observed to be “gyroph-
ase-bunched”(a beam localized in velocity space and not symmetric about Bo) due to their single, adiabatic 
reflection off of the bow shock.

At lower energies below ∼30 keV, Wind observations revealed that magnetic field-aligned ion beams could 
become disrupted by waves (Mazelle et al., 2000; Meziane et al., 1997, 2001). These three studies presented 
the first in situ evidence that ion-generated foreshock waves can modify foreshock ion velocity distributions 
by scattering and trapping the particles.

Wind has also played a pivotal role in our understanding of transient ion foreshock phenomena (TIFP) 
– large-scale (∼1,000 to  >  30,000  km), solitary [∼5–10 per day and transient] structures with durations 
of tens of seconds to several minutes (Sibeck et al., 2002, 2004; Wilson, Koval, Sibeck, et al., 2013; Zesta 
& Sibeck,  2004). For instance, Sibeck et  al.  (2002) used Wind to identify a new transient ion foreshock 
phenomenon, called a foreshock cavity, which is driven by a diamagnetic effect due to shock-accelerated 
ions. Foreshock cavities are diamagnetic regions surrounded by density enhancements and filled with su-
prathermal particles. Unlike a somewhat similar phenomena, hot flow anomalies, foreshock cavities do 
not show significant bulk flow velocity deflections, no dramatic ion temperature increase, and they are not 
centered on an IMF discontinuity. More recently, Wilson, Koval, Sibeck, et al. (2013) used Wind to show 
that transient ion foreshock phenomena can locally reflect ions, generating their own miniature foreshocks. 
This discovery was completely unexpected because it showed that a collisionless shock can self-consistently 
energize particles through a multi-step process: (1) the bow shock reflects incident ions; (2) the reflected 
ions stream against the incident solar wind; (3) the counter-streaming ion beams are unstable and generate 
TIFP; (4) the TIFP locally energize particles; and (5) these pre-energized particles interact with bow shock 
and gain even more energy.
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Figure 7.  A cartoon example of a possible terrestrial foreshock configuration. The IMF is represented by the dark 
blue lines, Vsw represents the bulk solar wind velocity, VExB is the (E × B)-drift velocity due to the solar wind convection 
electric field, and VFAB is the reflected field-aligned ion beam velocity (Adapted from Figure 1 of Wilson, 2016).
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In an adjacent region of space called the electron foreshock (see Figure 7), Wind provided the some of the 
first determinations of the source of radio emissions near 2 fpe (Reiner et al., 1996, and see Section 3.10 
for more discussion of radio measurements). The work showed the source region was within the electron 
foreshock and that the emission lacked a distinct polarization, which helped advance our understanding of 
2 fpe emissions and reduced the number of possible sources. Wind measurements also allowed researchers 
to examine some of the first time series electric fields of Langmuir waves (Kellogg, Monson, et al., 1996). 
Electron and ion foreshock processes are relevant to a range of space plasma phenomena, including waves 
in the lunar wake (see Section 3.3), waves in the solar wind (see Section 3.7.2, magnetotail reconnection (see 
Section 3.4), and waves upstream interplanetary shocks (see Section 3.8.1).

In summary, Wind observations have led to paradigm shifting results in multiple areas of foreshock re-
search and opened up new avenues for future studies.

3.7.  Solar Wind Studies

This section focuses on Wind’s contribution to several fields of solar wind physics. The section is broken up 
into four parts including large-scale magnetic phenomena (Section 3.7.1), kinetic instabilities and waves 
(Section 3.7.2), plasma turbulence (Section 3.7.3), and long-term statistical studies (Section 3.7.4).

3.7.1.  Large-Scale and Reconnection Investigations

Wind’s diverse orbits (Figure  1) combined with large spatial separation from multiple other spacecraft 
provided unique opportunities to investigate large-scale magnetic phenomena from solar wind structures, 
large-scale turbulence, interplanetary (IP) shocks, and solar transients. This section reviews Wind’s contri-
bution to advancing our understanding of these phenomena on large spatial scales.

The prograde orbits extending tangentially in the east/west direction and separated from Earth by up to 
1° in heliolongitude provided an opportunity for observations separated by much larger distances from 
Earth than is possible using spacecraft at L1. In fact, Wind holds the record for the most time spent at 
65–500 RE (2.5 × 10−3 − 0.02 AU) tangentially from Earth (similar distances were reached by the STEREO 
spacecraft in March-April 2007). Investigations using observations from Wind and other spacecraft allowed 
researchers to test theories of very large scale turbulence (Ogilvie et al., 2007; Wicks et al., 2009, also see 
Section 3.7.3), solar energetic particles and energetic storm particles (Neugebauer & Giacalone, 2005; Neu-
gebauer et al., 2006, see Section 3.9), the curvature/shape of IP shocks (Koval & Szabo, 2010), and the spatial 
coherence of interplanetary coronal mass ejections or ICMEs (Farrugia et al., 2005; Möstl et al., 2008; Lugaz 
et al., 2018, see Section 3.8.2).

Energetic storm particles (ESPs) are particles locally accelerated by an IP shock and have typical energies 
between 100 keV and 10 MeV. ESP events are typically classified into the following types depending on 
their temporal profile: spike, rise, step, flat and complex (Lario et al., 2003; Tsurutani & Lin, 1985). There 
is no simple relationship between the presence/absence and type of ESP events and shock parameters, 
such as speed, Mach number, or shock normal angle (Cohen, 2006). To understand how the acceleration of 
particles varies along the shock front, ESP measurements made by Wind and ACE of the same events were 
compared, when Wind was in prograde or petal orbits. The analyses of 86 ESP events measured for small 
longitudinal separations (<0.7°) revealed that the measurements become less correlated as the spacecraft 
separation increases (Neugebauer et al., 2006; Neugebauer & Giacalone, 2005).

The global radius of curvature of CME-driven shocks (Janvier et al., 2015) is thought to be 0.2–1 AU. This 
is one of the fundamental quantities that describes shocks since it characterizes the variation of the large-
scale shock normal angle (the angle between the shock normal and the magnetic field) along the shock 
front. However, for smaller spacecraft separations (<0.5°), Koval and Szabo  (2010) examined 62 shocks 
measured by Wind and at least one other spacecraft (i.e., ACE, Geotail, IMP-8, Interball-1, and/or SoHO) to 
determine the shock radius of curvature. The largest shock curvature that could be determined was 0.04 AU, 
that is, it reflects the “large-scale local” not global properties of the shock.

Taking advantage of Wind’s visit to Earth’s magnetotail while ACE remained in an orbit at L1 in October-No-
vember 2003, Farrugia et al. (2005) calculated the radial correlation length inside ICMEs (see Section 3.8.2) 
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using observations from the two spacecraft radially separated by 0.02 AU, while Möstl et al. (2008) performed 
one of the first two-spacecraft reconstructions of a magnetic cloud. Wind underwent distant prograde orbits 
during the maximum phase of solar cycle 23 (2000–2002), that is, Wind moved up to 0.01 AU tangentially 
(east-west in GSE coordinates) of the Sun-Earth line while measuring more than two dozen ICMEs. Lugaz 
et al. (2018) used these periods to calculate the nonradial correlation length inside ICMEs. Later Ala-Mathi 
et al. (2020) used the same observations to calculate the correlation length inside the sheath regions of IC-
MEs. Combined with measurements of the correlation lengths in the IP space, a picture of the coherence of 
ICMEs near one AU has emerged as shown in Figure 8. The correlation scale lengths of the magnetic field 
inside ICME ejecta were found to be larger than the scale lengths in ICME sheaths, themselves larger than 
the scale lengths in the solar wind, as expected. In addition, the correlation scale length of the magnetic 
field magnitude inside ICME ejecta was very close to the average ejecta radial width of 0.21 AU (Lepping 
et al., 1990). However, the correlation scale lengths of the magnetic field components inside ICME ejecta 
were 2–4 times lower than this value, indicating that magnetic field components may not be correlated at 
two spacecraft separated by one quarter to one half of an ejecta width. The GSE By magnetic field in the 
sheath has a larger correlation length than any other components, in the solar wind, ICME ejecta or sheath. 
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Figure 8.  Sketch of an ICME in Earth-centered interplanetary space in the ecliptic plane with scale lengths. The ICME 
sheath is preceded by an interplanetary shock (dark blue curve) and driven by the ICME ejecta, bounded by orange 
curves. The ICME is modeled as arcs of a circle by taking the average angular width of the ICME ejecta given by Zhao 
et al. (2017) and the average radial width reported by Kilpua, Balogh, et al. (2017) for the sheath. Blue lines show and 
IMF with a 45° Parker spiral angle at the Earth’s distance from the Sun. Scale lengths of the solar wind (Richardson 
& Paularena, 2001), ICME sheath (Ala-Mathi et al., 2020), and ICME ejecta (Lugaz et al., 2018) are illustrated in the 
y-direction with the color corresponding to the magnetic field component and magnitude as indicated for the sheath 
region. The correlation in light blue (σtot) illustrate the scale length associated with the overall Pearson correlation 
obtained by applying the averaging estimator of correlation coefficients for the Pearson correlation values of the 
magnitude and components (Adapted from Figure 6 in Ala-Mathi et al., 2020).
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This may reveal processes associated with the deflection of the magnetic field away from the radial direction 
behind ICME-driven shocks.

Wind’s high time resolution plasma and magnetic field measurements led to numerous studies of reconnec-
tion in solar wind current sheets (Gosling, 2007, 2010, 2011; Gosling, Eriksson, Phan, et al., 2007; Gosling, 
Phan, et al., 2007; Gosling & Szabo, 2008). Widely spaced multi-spacecraft in-situ observations revealed that 
the reconnection X-line in the solar wind can extend to millions of kilometers (or tens of thousands of ion 
inertial lengths) and persist for hours (or thousands of Alfvèn transit times). An X-line extending at least 
390 Earth radii was discovered using observations from Wind, ACE and Cluster (Phan et al., 2006). Later, 
even more extreme events, with X-lines extending 660–1,800 Earth radii, were reported using in-situ data 
from Wind, ACE, Geotail, and both STEREO spacecraft (Gosling, Eriksson, Blush, et  al.,  2007; Lavraud 
et al., 2009). These observations indicate that reconnection is not intrinsically bursty and patchy. The pro-
cess can operate in a large-scale and quasi-steady manner even when undriven by external flows. These 
discoveries involving Wind could not have been made in Earth’s spatially limited magnetosphere, and have 
revealed the solar wind as a laboratory for studying the large-scale properties of reconnection.

3.7.2.  Kinetic Instabilities and Waves

Perhaps the most unique advance that Wind provided to the field of space plasmas was its instrumentation 
designed to examine small-scale phenomena. For instance, Wind was one of the first spacecraft to fully re-
solve high frequency phenomena like Langmuir waves in time series electric field data (e.g., Kellogg, Mon-
son, et al., 1996). This ability has been further leveraged by Wind’s longevity and redundant thermal particle 
measurement capabilities (i.e., 3DP, SWE, and WAVES), which have allowed researchers to examine one of 
the more elusive topics in plasma physics, plasma instabilities. Small-scale phenomena play a critical role 
in the evolution of the solar wind (e.g., see reviews by Marsch, 2006; Verscharen, Klein, & Maruca, 2019). In 
this section, we discuss kinetic instabilities and waves.

Some of the more heavily examined instabilities are those involving temperature anisotropies in both 
electrons and ions. The long baseline of observations provided by Wind allowed researchers to perform 
a series of long-term statistical evaluations of the stability of particle VDFs in the solar wind (Adrian 
et al., 2016; Bale et al., 2009; Chen et al., 2016; Hellinger & Trávníček, 2006; Hellinger et al., 2006; Hell-
inger & Trávníček, 2014; Kasper et al., 2003, 2006, 2008, 2013, 2002; Maruca et al., 2012, 2011; Maruca & 
Kasper, 2013). Wind’s results showed that the firehose, mirror, and ion cyclotron modes (see Appendix B for 
details) are relevant to limiting the ion temperature anisotropy in the solar wind for protons and alpha-par-
ticles. Furthermore, theories of parallel and obliquely propagating firehose instabilities could be compared, 
which was only possible due to the large statistics and accuracy of the data. The critical takeaway is that 
some of these results help explain why the ion VDFs deviate from adiabatic approximations as they propa-
gate away from the sun.

Another free energy source of great interest is secondary beams (secondary to the core population). Note 
that the source of a second proton beam (in addition to the main solar wind proton beam) is still not well 
established. Interestingly, the presence of a differential flow between the proton and alpha-particles was 
found to reduce the instability thresholds for the temperature anisotropy instabilities of the Alfvèn ion 
cyclotron and fast/magnetosonic-whistler modes (Bourouaine et al., 2013; Verscharen et al., 2013; Wicks 
et al., 2016). Another study showed electromagnetic ion cyclotron waves were unstable to secondary proton 
beams in the solar wind (Wicks et al., 2016) suggesting ion cyclotron wave storms may be locally generated. 
While the influence of this secondary proton beam reduces the thresholds for the temperature anisotro-
py instability, others have found it also introduces a new beam instability that radiates fast/magnetoson-
ic-whistler modes (Alterman et al., 2018; Chen et al., 2016; Gary et al., 2016).

Electron-driven instabilities are also of great interest as they help regulate the partition of energy among the 
multiple electron populations in the solar wind. Solar wind electrons are comprised of a cold, dense core, 
hot tenuous halo, and a warm, magnetic field-aligned beam streaming away from the sun called the strahl 
(Wilson et al., 2019a, 2019b, 2020a). Specifically, electron VDFs have been compared with electromagnetic 
wave observations to test theoretical instability thresholds for the whistler mode (Moullard et  al.,  2001; 
Wilson, Koval, Szabo, et al., 2013; Wilson et al., 2020a), fast/magnetosonic modes (Kellogg et al., 2011; Ver-
scharen, Chandran, et al., 2019; Wilson et al., 2009; Wilson, Koval, Szabo, et al., 2013), electrostatic solitary 
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modes (Bale, Kellogg, Larson, et al., 1998; Bale et al., 2002; Kellogg et al., 2011), ion acoustic modes near in-
terplanetary (IP) shocks (Wilson, 2010; Wilson et al., 2007, 2020a), Langmuir-like modes (Ergun et al., 1998; 
Moullard et al., 2001; Pulupa & Bale, 2008), and electron cyclotron drift instability modes near IP shocks 
(Wilson, ​2010; Wilson et al., 2010).

The studies mentioned above have focused on measurements of ions or electrons separately, however the 
stability of a plasma depends on all species simultaneously. In recent years, data from Wind’s multiple par-
ticle instruments have been combined to investigate the total plasma stability. Chen et al. (2016) combined 
data from SWE and 3DP, including all major solar wind species (protons, alphas, and electrons) to compare 
the stability of the solar wind to the long-wavelength firehose and mirror instabilities, for which analytical 
thresholds exist. For both instabilities, the dominant contribution (∼2/3) was found to be from the pro-
tons, but there were also significant contributions (∼1/3) from the other species. When a proton beam was 
present, drifts between species contributed 57% to the firehose instability. In this combined analysis, both 
instabilities were found to provide good constraints to the data with <1% unstable, suggesting that these 
long-wavelength multi-species instabilities act to provide a robust limit the evolution of the solar wind.

Klein, Alterman, et al. (2018) then used a method involving Nyquist’s instability criterion to search for the 
presence of unstable plasma using ion (proton and alpha) data from SWE and assuming isotropic electrons. 
They found the majority (53.7%) of solar wind intervals to be unstable, with the vast majority of these being 
kinetic (no long-wavelength counterpart), with growth rates satisfying ∼0–0.2 Ωcp. However, the majority of 
growth rates were found to be slow compared to other dynamical timescales, such as the turbulence times-
cale, making it unclear whether these kinetic instabilities could be dynamically relevant or constrain the 
solar wind, and may explain why the majority of the plasma was found to be unstable.

Furthermore, examination of ∼10  years of data found that  /e p tot
T T  3 was satisfied for ∼12.4% of 

∼446,000 intervals (Wilson et al., 2018). This temperature ratio is a threshold often used to determine the 
separation between strong and weak damping of ion acoustic waves. Wilson et al. (2020a) examined electron 

WILSON ET AL.

10.1029/2020RG000714

19 of 70

Figure 9.  Adaptations of Figures 7 and 8 from Gary et al. (1994) showing the observed data from Wilson et al. (2020a). 
The left panel shows the parallel halo-to-core electron temperature ratios,  /eh ecT T , versus parallel core electron beta, 

βec,∥ (see Appendix A for symbol definitions) while the right panel shows halo temperature temperature anisotropy, 
  /

eh
T T , versus βec,∥. The left panel is a proxy for heat flux instability while the right for temperature anisotropy 

instability. In each panel are curves indicating an instability thresholds (corresponding to maximum growth rates 
satisfying γmax > 10−1 Ωcp), below(above) which the observed VDF is stable(unstable). Diamonds shown in green and 
orange are unstable while blue are stable. The green diamonds show data unstable to the whistler heat flux instability 
(WHFI) while the orange diamonds are unstable to the whistler temperature anisotropy instability (WTAI). This figure 
illustrates that most electron VDFs are unstable near IP shocks (Taken from Figure 6 in Wilson et al., 2020a). Note 
these data are publicly available, for example, see Table C1 in Appendix C.
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VDFs near IP shocks finding only ∼3% were stable to either the whistler heat flux or whistler temperature 
anisotropy instabilities, as shown in the right-hand panel of Figure 9. They also found ∼28.6% of all VDFs 
examined satisfied  /e p tot

T T  3 and ∼42.8% of upstream-only VDFs satisfied the same criteria, that is, 

conducive for ion acoustic wave growth. To compare with ambient solar wind studies, Wilson et al. (2020a) 
examined the rate of instability of the firehose and mirror modes finding ∼1.3% and ∼13.5% were unstable, 
respectively. These rates are ∼10 and ∼20 times higher than those found by Chen et al. (2016) in the ambient 
solar wind for the same instability criteria.

These studies are just small sample of the overall contribution Wind has provided to advancing our under-
standing of instabilities. Wind data have revealed that solar wind VDFs are likely strongly shaped by plasma 
instabilities as they propagate away from the Sun and that the amplitudes of high frequency waves can 
be orders of magnitude larger than previous data would suggest. These advances were only possible with 
Wind’s unique suite of instruments and the major advance in resolution they provide.

3.7.3.  Turbulence

Wind has enabled significant advances in our understanding of plasma turbulence. These were made pos-
sible due to the continuous 3 s resolution plasma moments from 3DP together with magnetic field vectors 
at up to 22 samples per second, allowing the full inertial range to be studied with all MHD variables for the 
first time, and the start of the kinetic range to begin being probed in detail. These high-resolution data are 
supported by measurements of the ion temperature anisotropy from SWE allowing a detailed examination 
of the interaction of electromagnetic fields and particles as a result of turbulence. The many years of data 
in the free solar wind also allow the study of the dependence of the turbulence properties on important 
parameters, such as plasma beta and cross-helicity. In this section, we discuss Wind’s contribution to our 
understanding of plasma turbulence.

Turbulence can be described as fluctuations in properties of the plasma (e.g., density) that are chaotic in 
nature (Bruno & Carbone, 2013; Verscharen, Klein, & Maruca, 2019). Turbulence is an intrinsically mul-
ti-scale phenomenon where energy enters at large spatial scales and cascades to much smaller scales. Al-
though the individual realizations cannot be predicted, the statistical properties of the energy cascade rate 
can be derived and in plasmas it changes at different temporal and spatial scales. Unlike in neutral fluid 
turbulence, turbulence in magnetized plasmas is generally anisotropic. That is, the distribution of power 
in wave vector (k) space is not equal in all directions relative to Bo, that is, k⊥ ≠ k∥ ≠ k. Often turbulence is 
examined by use of Fourier transforms in frequency or wavenumber space. In the solar wind, for instance, 
the magnetic fluctuation power spectrum has the form of multiple broken power-laws where each pow-
er-law corresponds to a different type of cascade. The range with the largest scales and lowest frequencies 
in the spacecraft frame is referred to as the injection range or outer scale. The next range is called the MHD 
inertial range and it extends up to slightly larger than the relevant ion scales (e.g., ion inertial length or ion 
thermal gyroradius). Beyond this is the kinetic range, also sometimes known as the dissipation range (Note 
that this term has become less relevant and been replaced by “kinetic range.”) since this is where fluctua-
tions can transfer energy to the medium through heat. For more details, see Appendix A and the Glossary 
for definitions.

An important achievement of Wind has been to establish the MHD inertial range scaling properties. 
Mangeney (2001) investigated the scaling of the magnetic and velocity fluctuations through conditioned 
structure functions, finding the velocity to have a shallower scaling, consistent with a wavenumber spec-
trum k−3/2, compared to k−5/3 for the magnetic field. This finding was confirmed by later studies (Podesta 
et al., 2006, 2007; Salem et al., 2009). Podesta and Borovsky (2010) showed that both Elsasser spectra (Spec-
tra of the Elsasser variables z± defined in Appendix A) scale as k−5/3, but that the magnetic field and total 
(i.e., magnetic plus velocity fluctuation energies) energy spectra scale as k−3/2 when the cross-helicity is 
large, which has since been confirmed by others (Boldyrev et al., 2011; Chen et al., 2013). These differences 
are significant since leading models of plasma turbulence predict these scalings, for example, a total ener-
gy spectrum k⊥−5/3 by Goldreich and Sridhar (1995) and k⊥−3/2 by Boldyrev (2006). Boldyrev et al. (2011); 
Boldyrev and Perez (2012), based on previous work by Grappin et al. (1983), proposed that the difference 
between magnetic and velocity fluctuation spectra is due to turbulence-generated residual energy, which 
is predicted to scale as k⊥−2 and this steep scaling was confirmed by Chen et al. (2013). The large dataset 
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provided by Wind allows conditional statistics to be used to separate solar 
wind with different properties and this has allowed the measurement of 
the impact of cross helicity and residual energy on the turbulent cascade 
to be measured simultaneously (Bowen et al., 2018; Bruno et al., 2007; 
Wicks, Mallet, et al. 2013; following Bavassano et al., 1998). The current 
state of knowledge is summarized in Figure 10 which shows the inertial 
range spectral indices of the MHD fields as functions of cross-helicity, 
|σc|, which is a quantitative measure of imbalance – the different fluxes of 
turbulent fluctuations propagating toward or away from the sun. While 
not every aspect of this figure is explained (notably the cross-helicity de-
pendence of the total energy spectrum), we are tantalizingly close to un-
derstand the physics that governs the spectral properties of the MHD tur-
bulence cascade, and Wind has played a dominant role in enabling this.

Wind has also allowed us to measure the anisotropy of the turbulence to 
further determine the physics of the cascade. Wicks et al. (2011) used a 
wavelet technique (based on Horbury et al., 2008) to measure the spec-
trum of the Alfvénic turbulence variables with respect to the local mean 
field direction. Deep in the inertial range, all fields were shown to be ani-
sotropic, k⊥≫ k∥, with velocity, magnetic, and the dominant Elsasser field 
having 


2k  scaling parallel to the local mean field. This 


2k  spectrum is 

one the key predictions of critical balance, the conjecture at the heart of modern turbulence theories, im-
plying that the turbulence becomes increasingly anisotropic toward smaller scales. Verdini et al. (2018) took 
this further by using a structure function technique (based on Chen et al., 2012) to measure the 3D anisotro-
py of the turbulent eddies, concluding that under conditions of weak solar wind expansion the turbulence 
spectrum is different in all three directions resulting in “ribbon” rather than “tube” shaped eddies at small 
scales, consistent with the Boldyrev (2006) picture. Verdini et al. (2019) then showed that this is also true for 
the velocity fluctuations, although they maintain overall their shallower scaling compared to the magnetic 
fluctuations. Figure 11 shows an example of the 3D magnetic eddy shapes measured by Wind.

While the dominant fluctuation power in the solar wind is in the Alfvénic fluctuations, there is also a 
subdominant compressive component to the turbulence, which presents some interesting, but quite dif-
ferent physics. While it has long been known that the solar wind compressive components are broadly 
pressure-balanced, Howes et al. (2012) and Klein et al. (2012) performed a statistical analysis on the density 
and magnetic field strength correlation as a function of plasma β using 10 years of Wind data. They conclud-
ed a compressive component is consistent with being almost entirely in the kinetic slow mode, implying 
very little or no transfer of energy to whistler turbulence at smaller scales. Later, Verscharen et al. (2017) 
compared a larger variety of compressive quantities to linear predictions for both kinetic and MHD slow 
modes, finding the MHD polarizations to be a good match. This unexpected (It was not expected that MHD 

WILSON ET AL.

10.1029/2020RG000714

21 of 70

Figure 10.  Variation of the wavenumber power spectral indices of 
magnetic field (Eb), velocity velocity (Ev), total (Et = Eb + Ev), and residual 
energy residual energy (Er = Ev − Eb) with the level of imbalance |σcσc|. 
Note that |σc| ≈ 0 corresponds to balanced turbulence and |σc| ≈ 1 to highly 
imbalanced turbulence (Adapted from Figure 4 in Chen, 2016).

Figure 11.  Statistical 3D eddy shapes of magnetic fluctuations at three different scales in the inertial range, from large 
scales (left) to small scales (right), for the case of weak expansion. Colors represent distance from the origin (Adapted 
from Figure 11 in Verdini et al., 2018).
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would do so well at predicting the polarizations since the solar wind is a weakly collisional plasma.) raises 
interesting possibilities about what may be causing such fluid-like behavior in the weakly collisional solar 
wind, with possibilities including wave-particle scattering and anti-phase-mixing; both topics have much 
broader implications for weakly collisional plasma physics in general.

It is well-known that plasma turbulence is not a completely random process but generates correlated in-
termittent structures (e.g., Bruno & Carbone, 2013; Salem et al., 2009). However, an open question in solar 
wind physics is exactly how much of the structure in the solar wind is generated in situ by turbulence versus 
remnant structure from processes at the Sun (Borovsky, 2008; Owens et al., 2010). One view is that large 
angle magnetic field rotations represent flux tubes or other structures from the Sun, while the turbulence 
is responsible for the small-amplitude fluctuations of these structures. However, Zhdankin et  al.  (2012) 
presented an analysis to suggest that turbulence can account for the full distribution of angle rotations, 
large and small. They compared 5 years of Wind observations to an MHD turbulence simulation to show a 
very good match for this distribution, concluding that the majority of solar wind discontinuities arise as in-
termittent structures from the turbulent cascade. Osman et al. (2012) investigated these structures further, 
finding the plasma near the discontinuities to be hotter and the temperature more anisotropic and often 
marginal to the mirror and firehose instabilities, suggesting a link between the structures, turbulent heating 
and kinetic instabilities. Although the debate on the nature of the structures continues, these results from 
Wind have changed the way we view solar wind structure.

At the large-scale end of the cascade, the correlation length of turbulence is linked to the energy containing 
scales that feed the cascade. When measuring such large-scale fluctuations in the solar wind, one signifi-
cant problem is that plasma travels quickly over the spacecraft, meaning that at long timescales the stream 
structure dominates the signature, rather than the low-frequency fluctuations that might be present within 
streams. The extensive Wind dataset allowed Bruno et al. (2019) to measure the low-frequency spectrum 
within extended intervals of slow solar wind, showing for the first time that slow solar wind, like the fast 
wind, is also able to support a “1/f” range, in addition to this well-known result in fast wind. Long time 
series of fast wind data from Wind were also used by Wicks, Roberts, et al. (2013) to show that the scale at 
which the 1/f range transitions to the inertial range of turbulence depends on the correlation properties of 
the fluctuations at the spectral break. Intervals with less aligned velocity and magnetic field fluctuations 
become turbulent at larger scales, even within a single stream. The realization of this property of turbulence 
is significant since it indicates that the turbulence spectrum may extend to larger scales than previously 
thought.

Data from Wind MFI and SWE have been used in combination with data from other spacecraft to achieve 
multi-point measurements of the turbulence in the solar wind. Such a multi-point analysis allows the study 
of the space-time structure of the turbulent fluctuations without having to rely on Taylor’s frozen-in hy-
pothesis, which is usually employed in single-point measurements (Verscharen, Klein, & Maruca, 2019). 
By combining plasma and magnetic-field data from IMP-8 and Wind, Richardson and Paularena  (2001) 
calculated multiple correlation coefficients for solar wind turbulence. The scale sizes for changes in the 
magnetic-field components perpendicular to the flow direction were found to be about 0.002 AU, while the 
plasma velocity and density scale lengths were found to be larger by a factor of more than two. The same 
study found a radial scale length of order 0.017 AU. These results were supported by a later study using the 
amplitude ratio, coherence, and phase lag of field and plasma measurements from Wind and ACE (Matsui 
et al., 2002), although the radial scale was somewhat smaller than in the earlier estimate.

The combination of magnetic-field data from Wind with quasi-simultaneous measurements from ACE 
and Cluster facilitated the determination of the Eulerian correlation scale and the Taylor microscale in 
the solar-wind plasma frame near Earth (Matthaeus et al., 2005). This multi-spacecraft comparison gives 
an estimate for the omni-directional correlation length of 0.0082 AU. The combination of this result with 
Cluster’s simultaneous measurement of the Taylor microscale of 1.6 × 10−5 AU provides an estimate for the 
effective Reynolds number of about 230,000 in the measured solar-wind interval. The same method also 
reveals a Eulerian decorrelation time of about 2.9 h in the solar wind near one AU (Matthaeus et al., 2010). 
Later combinations of ACE, Geotail, and IMP-8 data with Wind data refined this picture, finding slightly 
smaller correlation lengths and different correlation lengths in fast and slow solar-wind streams (Matthaeus 
et al., 2016; Wicks et al., 2009, 2010). Wind also supported other turbulence studies through, for example, 
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cross-calibrations with ACE measurements for the OMNI datasets (King & Papitashvili, 2005) or as a source 
of magnetic-field measurements for spacecraft without a working magnetometer (Pitňa et al.,  2019; Ša-
fránková et al., 2019).

Leamon et al. (1998) attempted to distinguish between wave and turbulence paradigms at the dissipation 
scale using Wind MFI solar wind data. The authors observed steepening of the magnetic field spectrum 
at ∼1 Hz with an associated increase in compressibility and nonzero magnetic helicity. Furthermore, the 
turbulence was measured to be significantly oblique, interpreted as a combination of kinetic Alfvén waves 
and 2D (k∥ = 0) modes. A reinterpretation of these results has contributed to our current understanding of a 
critically balanced dispersive cascade of kinetic Alfvén turbulence (with some damping at ion and electron 
scales).

Another way to understand the processes occurring in the kinetic range is to investigate the scale at which 
the spectral break occurs. Leamon et al. (2000) compared the measured power spectral break point—the 
frequency or wavenumber where the power spectral density power-law profile changes exponent—to the 
cyclotron frequency, parallel resonant wavenumber, and inertial scale, finding the latter to have the best 
correlation, and suggested this could be related to current sheets of the break point thickness. Bruno and 
Trenchi (2014) used Wind in combination with MESSENGER and Ulysses observations to show that the 
break point evolves linearly with distance from the Sun, similarly to the ion gyroscale, inertial length, and 
cyclotron resonance scale. The authors concluded that the scale of cyclotron resonance controls the linear 
evolution. The difficulty, however, in distinguishing these scales (and therefore processes) is that at β ∼ 1 
they are essentially the same, so Chen et al. (2014) examined intervals of very high and low β, showing the 
break point to be at the gyroscale at high β and inertial scale at low β. Woodham et al. (2018) came to a simi-
lar conclusion using the large Wind data archive and examining the full range of β. The high β result match-
es expectations for a transition to dispersive kinetic Alfvén turbulence, but a fully consistent explanation 
for the low β result has yet to be identified and remains an open question. Boldyrev et al. (2015) suggested 
that the result could be explained by a significant field-parallel wavenumber component at low β. Vech 
et al. (2018) used Wind data at low electron β to suggest the break to be related to the disruption scale at 
which reconnection could dominate the cascade dynamics. We still have much to learn about kinetic range 
turbulence, but Wind’s early pioneering results have certainly given key valuable insights.

The early Leamon et al. (1998) results were followed up by statistical studies of the high-frequency magnetic 
field data, identifying key features of coherent waves with distinct left-handed and right-handed rotations 
(Markovskii et al., 2015). Woodham et al. (2019) linked these helical waves to the SWE proton temperature 
anisotropy data and showed that field-parallel propagating modes at the spectral break scale are dominat-
ed by ion cyclotron waves driven by temperature anisotropy and proton and alpha particle beams (Wicks 
et al., 2016) but the background of oblique modes are kinetic Alfvén waves with no particular dependence 
on proton temperature anisotropy. These statistical studies, only possible with Wind, demonstrate the link 
between particle temperature and the inertial range energy cascade, and provide the current best knowl-
edge of energy transfer in turbulent space plasmas.

These are just a selection of results that Wind has enabled in solar wind turbulence, but they illustrate the 
diverse aspects of the physics that have been revealed. Hopefully Wind will continue contributing to our 
understanding of this important and widespread plasma process over the coming years, in particular in 
combination with new missions such as Parker Solar Probe and Solar Orbiter, where the multi-point meas-
urements will likely prove to be invaluable (e.g., Velli et al., 2020).

3.7.4.  Long-Term Solar Wind Studies

Wind’s longevity has been a major advantage for long-term statistical studies of solar wind physics. Com-
bined with the most accurate solar wind plasma measurements of any near-Earth spacecraft, Wind obser-
vations have helped researchers uncover subtle collisional effects, the first statistically significant estimate 
of the electron-to-ion temperature ratio,  /e s tot

T T  (s = p for protons, α for alpha-particles), and novel re-
lationships between the alpha-to-proton abundance ratio and parameters such as the solar wind speed and 
sunspot number. In this section, we hightlight some of these results.
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Surprisingly, the first long-term statistical study of  /e s tot
T T  was 

 /e s tot
T T  was only recently performed using Wind observations (Wilson 

et al., 2018). The study used ∼10 years of solar wind data, from January 
1995 to December 2004, publicly available at SPDF CDAWeb. A summary 
of the results for all solar wind conditions from Wilson et al. (2018) are 
shown in Table 6. See Appendix A for further symbol definitions.

Wilson et al. (2018) showed, however, that not only is the solar wind plas-
ma not in thermodynamic equilibrium, the plasma is not in thermal equi-
librium either. Note that the work by Wilson et al. (2018) was not the first 
to show the solar wind is out of equilibrium. It is referenced here as it’s 
recent, it’s a Wind-based study, and it shows the largest statistically sig-
nificant dataset that includes electron velocity moments. The authors il-
lustrated that because the particle-particle Coulomb collision rates are so 
low in the IP medium, an interaction with just one small-amplitude wave 
packet can cause a greater effect than the cumulative effect of collisions 
between the sun and Earth. This begs the question of why we actually 
see any evidence of particle-particle collisions in the solar wind (e.g., see 
results in Adrian et al., 2016; Bale et al., 2013; Horaites et al., 2015, 2019; 
Kasper et  al.,  2017; Maruca et  al.,  2013; Salem et  al.,  2003; Wilson 
et al., 2018, 2019a) since we consistently observe, directly or indirectly, 
numerous different types of electromagnetic fluctuations in the solar 
wind (Agapitov et al., 2020; Bale et al., 2009; He, Wang, et al., 2015; He, 
Pei, et al., 2015; He et al., 2019; Kasper et al., 2013; Malaspina et al., 2020; 
Maruca et al., 2012; Vasko et al., 2020; Wicks et al., 2016). That is, the 
ubiquitous electromagnetic waves should wash out any particle-particle 
collision signatures much faster than particle-particle collisions can re-
lax the distributions. Note that the result of wave-particle interactions is 
not to reduce a particle distribution to an isotropic Maxwellian. Rather, 
wave-particle interactions tend to produce power-laws or plateaus and 
sometimes even introduce anisotropies (e.g., see discussion in Wilson 
et al., 2020a, and references therein for more details). So there are clear 
differences between the effect of waves versus particle-particle collisions 
on the particle distribution functions. The observation of collisional ef-
fects despite their weak/slow influence on the particle distributions 
compared to other effects (e.g., waves and/or turbulence) remains an out-
standing question.

In contrast researchers have found evidence of a preferential ion heat-
ing source in the solar corona and even placed limits on the heliocentric 
distance below which this heating occurs (Kasper et al., 2017; Kasper & 
Klein, 2019), a result only found due to the large statistics available from 

Wind data sets. That is, the ions appear to be heated below some altitude near the sun and then negligible 
changes occur as the particles propagate to Earth. The conflict between the preferential coronal ion heating 
observations and the expected plasma evolution due to interactions with ubiquitous waves between the Sun 
and Earth still remains an unanswered and fundamentally critical question in studies of the solar wind.

Finally, Wind studies of the relative abundance between protons and alpha-particles have shown solar cycle 
and other effects (Alterman et al., 2018; Alterman & Kasper, 2019; Kasper et al., 2007, 2012). The authors 
showed that the alpha-particle-to-proton abundance varies with solar cycle and is a function of solar wind 
speed (Alterman & Kasper, 2019; Kasper et al., 2007, 2012). That is, higher speed solar wind has a higher 
alpha-particle abundance than slower wind and the abundances peak near solar maximum. In fact, when 
binned by solar wind speed, Kasper et al. (2007) showed a consistent six month periodicity in the alpha-par-
ticle abundance, due to the heliographic latitudinal changes as the spacecraft orbits the Sun. Later, Alter-
man and Kasper (2019) showed that there is a phase delay between the rise in sunspot numbers and the 
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Parameter X25%
a X75%

Xb

Densities

ne [cm−3] 5.71 13.0 8.57

np [cm−3] 5.05 11.7 7.61

nα [cm−3] 0.13 0.32 0.21

Temperatures and Thermal Speeds

Te,tot [eV] 9.41 13.1 11.1

Tp,tot [eV] 4.80 15.1 8.45

Tα,tot [eV] 5.43 34.0 12.2

VTe,tot [km/s] 1,579 2,411 1,975

VTp,tot [km/s] 21.9 76.9 40.2

 /e p tot
T T 0.78 2.14 1.28

 /e tot
T T 0.32 1.78 0.82

  / p tot
T T 1.39 3.62 2.01

Plasma Betas

βe,tot 0.83 2.64 1.45

βp,tot 0.67 1.90 1.16

βα,tot 0.02 0.19 0.07

Frequencies and Lengths

fcp [Hz] 0.04 0.22 0.09

fce [Hz] 80.2 409 162

fpp [Hz] 371 944 578

fpe [kHz] 17.2 42.5 26.3

ρce [km] 1.03 4.62 2.28

ρcp [km] 32.5 186 88.8

λe [km] 1.12 2.77 1.82

λp [km] 50.5 129 82.5

λDe [m] 4.74 13.8 8.58

aXy% is the yth percentile. b X  is the median.

Table 6 
Long-Term Solar Wind Statistics
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rise in alpha-particle abundance, which turns out to be a monotonic function of the solar wind speed. The 
authors found that changes in the sunspot number precede changes in alpha-particle abundance with the 
smallest lag time, ∼150 days, corresponding to the lowest solar wind speed. The alpha-particle abundance 
was assumed to be modified in the photosphere only but the speed-dependent lag in the alpha-particle 
abundance in response to changes in SSN suggests other processes at higher altitudes are important. This 
work has yielded new clues about the source of the slow solar wind, a long-standing problem in solar wind 
physics.

The above contributions to our understanding of the solar wind almost entirely rely upon the longevity and 
accuracy of Wind measurements. That is, the use of data from a single spacecraft removes the uncertain-
ties introduced when cross-calibrating between different sets of instrumentation from different spacecraft. 
Given that many of these nuanced results are relatively small in magnitude and/or difficult to measure, it is 
unlikely many could have been obtained using multiple missions over similar periods of time.

3.8.  Transient Large-Scale Magnetic Phenomena

The Wind mission has provided numerous opportunities to identify, characterize, and model IP transients 
such as corotating interaction regions (CIRs), stream interaction regions (SIRs), IP shock waves, and ICMEs. 
This section summarizes the results of investigations that have improved our understanding of these struc-
tures and their importance for Sun-Earth connections. This section is broken up into the following three 
subsections: Section 3.8.1 highlights advances made on IP shocks, Section 3.8.2 discusses Wind’s pivotal role 
in our understanding of ICMEs, and Section 3.8.3 discusses advances in our understanding of SIRs/CIRs.

3.8.1.  Interplanetary Shock Waves

One of the most important astrophysical phenomena for particle energization and space weather impacts 
are collisionless shock waves. Wind has made several critical contributions to our understanding of colli-
sionless shock waves including, but not limited to, improved understanding of energy dissipation mecha-
nisms, particle energization processes and sources, the structure of shocks, and remote sensing of shocks. 
In this section we briefly highlight a few of these advances while pointing the reader to other sections where 
the remaining topics are discussed. This section focuses on IP shocks but a few important contributions 
from measurements at the terrestrial bow shock are discussed as well.

In the IPM, shocks are mainly caused by ICMEs (see Section 3.8.2) and planetary bow shocks. When ICMEs 
reach a supersonic velocity as they propagate and expand through the IPM (Lepping et al., 2007; Lepping, 
Wu, Berdichevsky & Ferguson, 2008; Vandas et al., 2009) a shock can form on their leading (anti-sunward) 
edge. IP shocks can also be generated by interaction regions between slow and high speed solar streams (G. 
Mann et al., 2002; Mason et al., 2009), often referred to as CIRs, or stream interaction regions or SIRs (see 
Section 3.8.3). Although we know what forms collisionless shocks, the energy dissipation mechanism(s) 
that govern shock dynamics in astrophysical plasmas are still not well understood.

As previously discussed in Section 3.6, in relation to the terrestrial ion foreshock, there are numerous un-
knowns on the topic of shock particle energization by collisionless shocks. Wind studies led to some of the 
first pieces of evidence to illuminate how, for example, field-aligned ion beams can be generated at the qua-
si-perpendicular bow shock (e.g., Meziane et al., 1997; Meziane et al., 1999, 2002, 2003, 2011). A tangential 
study discovered that a type of TIFP could generate similar field-aligned ion beams, but the generation was 
occurring locally in the ion foreshock not at the quasi-perpendicular bow shock (e.g., Wilson, Koval, Sibeck, 
et al., 2013, and discussed in Section 3.6). This spawned a whole new field of study and helped lead to the 
serendipitous discovery that the same types of TIFP could also locally generate relativistic electrons (e.g., 
Wilson et al., 2016, and discussed in Section 3.6). Multispacecraft studies including Wind have even con-
firmed the long-theorized concept of shock-shock acceleration between the terrestrial bow shock and an IP 
shock (though this was not surprising) (e.g., Hietala et al., 2011, 2012). Thus, Wind’s unique compliment of 
instrumentation has led to several critical contributions to our understanding of shock acceleration.

Early Wind observations illustrated evidence of numerous kinetic instabilities located in and around 
collisionless shocks (e.g., Bale et  al.,  1997; Bale, Kellogg, Larson, et  al.,  1998; Bale, Kellogg, Goetz, & 
Monson, 1998; Kellogg, Monson, et al., 1996; Kellogg et al., 1999). The waves radiated by these instabilities 
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have long been theorized to dissipate energy in collisionless shock waves (e.g., see Sagdeev, 1966). There-
fore, Wilson et al. (2007) examined electrostatic waves around 67 IP shocks finding that the wave ampli-
tudes increased with increasing Mach number and strength. The positive correlation is evidence that as 
the shock gets stronger, it requires larger amplitude waves to dissipate more energy. A follow-on case study 
examined a high Mach number shock presenting the first observations of electron Bernstein-like modes 
identified as having been radiated by the electron cyclotron drift instability or ECDI (Wilson, 2010). The 
importance of the identification is that the ECDI results from the free energy between incident electrons 
and shock-reflected ions, that is, the wave couples to both ions and electrons and illustrates a connection 
between particle reflection and wave generation. Later work (Wilson et al., 2012) led to the observation of 
large amplitude magnetosonic-whistler precursors (see Appendix B for definition and properties) upstream 
of shocks that could not have generated said waves through dispersive radiation—waves emanating from a 
time- and spatially varying current structure with a frequency depending upon the wave number (Tidman 
& Northrop, 1968). It was determined that the precursors were likely radiated by a modified two-stream 
instability due to free energy similar to what drives the ECDI. Furthermore, the waves were shown to be 
stochastically accelerating the electrons parallel and ions perpendicular to the quasi-static magnetic field. 
The same mechanism has since been proposed as a possible source mechanism for the relativistic electrons 
discussed above (e.g., see Roberg-Clark et al., 2018). Thus, Wind’s kinetic-physics-based instrumentation 
has helped greatly advance our understanding of instability-based energy dissipation mechanisms in colli-
sionless shocks.

More recently a Wind-based study examined the structure of low Mach number, low plasma beta, quasi-per-
pendicular shocks (Wilson et al., 2017). The work was motivated by discussions in the literature that argued 
such shocks should be laminar in their magnetic field profiles, thus the particle trajectories through the 
shock should be well behaved (e.g., see review by Mellott, 1985). Interestingly, with the high cadence Wind 
magnetometer data it was found that not only are these low Mach number, low plasma beta, quasi-perpen-
dicular shocks filled with magnetosonic-whistler precursors, the precursor amplitudes were, on average, 
∼220% of the change in magnetic field magnitude across the shock. That is, the precursors contained the 
largest magnetic field gradients in the shock transition, not the shock ramp. Note that unlike the Wilson 
et al. (2012) study, these shocks are too low in Mach number to reflect sufficient ions to generate the modi-
fied two-stream instability or ECDI. Thus, the waves are likely generated through dispersive radiation. The 
critical point is, however, that such large amplitude waves clearly affect the incident ion and electron trajec-
tories as recently illustrated using the Magnetospheric Multiscale (MMS) spacecraft (e.g., Chen et al., 2018; 
Hull et al., 2020; Oka et al., 2019). Thus, Wind has also advanced our understanding of collisionless shock 
structure.

There are several other IP shock-related advances led by Wind studies that will not be discussed here as they 
are discussed elsewhere in this review. Some of these include radio emissions such as type II solar radio 
bursts (e.g., Bale et al., 1999; Pulupa & Bale, 2008, and discussed in Section 3.10), acceleration and transport 
of solar energetic particles events (SEPs) (e.g., Reames, 2017, and discussed in Section 3.9), and the nonpla-
nar structure of IP shock fronts (e.g., Neugebauer & Giacalone, 2005, and discussed in Section 3.7.1).

Below we discuss Wind’s contribution to understanding the phenomena associated with ICMEs and CIRs.

3.8.2.  Interplanetary Coronal Mass Ejections

Interplanetary coronal mass ejections (ICMEs) are the manifestations in the solar wind of CMEs at the 
Sun and are the major solar wind drivers of space weather. In particular, around 90% of major geomagnetic 
storms (Dst ≤ −100 nT) occur when ICMEs encounter Earth (Zhang et al., 2007), and especially severe 
storms driven by ICMEs, such as the March 1989 storm that caused a blackout of the Quebec power grid, 
and the 1859 “Carrington” event (Carrington, 1859; Siscoe et al., 2006), can lead to significant societal and 
economic impact (Oughton et al., 2017; Riley et al., 2018). On the other hand, most ICMEs produce only 
modest geomagnetic effects (e.g., Richardson & Cane, 2010). A leading driver of enhanced geomagnetic 
activity is the presence of strong, sustained southward-directed magnetic fields, and these are frequently 
found in a subset of ICMEs termed “magnetic clouds” (MCs) (Burlaga et al., 1981) characterized by an 
enhanced, slowly rotating, flux-rope-like magnetic field; southward fields in the ICME sheath can also con-
tribute (Kilpua, Balogh, et al., 2017). Particles accelerated at ICME-driven shocks also contribute to solar 
energetic particle events (e.g., Reames, 2012). Although ICMEs and their characteristic signatures (e.g., Zur-
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buchen & Richardson, 2006) were largely discovered in early in-situ observations (often being referred to 
as “shock drivers”, “pistons,” and “ejecta”), Wind has made significant contributions to the study of ICMEs 
and MCs (e.g., Hidalgo & Nieves-Chinchilla, 2012; Lepping, Wu, Berdichevsky & Szabo, 2018) and their 
space weather effects.

Wind launched roughly two years before the SoHO spacecraft that carries the LASCO coronagraphs, which 
makes near-continuous observations of the corona and CMEs. The combination of Wind in situ meas-
urements from MFI, SMS, 3DP, and SWE, SoHO LASCO CME observations and and extreme ultraviolet 
observations from EIT Yokhoh X-ray observations (e.g., Berdichevsky et al., 2002) resulted in the confirma-
tion of the connection between CMEs in the corona and MCs subsequently observed near-Earth (e.g., see 
Webb, 1998; ; Webb et al., 1998; Webb et al., 2000). Previous studies had associated the arrival of a magnetic 
cloud with the disappearance or eruption of a prominence at the Sun a few days earlier (Webb, 1988; Wilson 
& Hildner, 1984), while the orientation of the MC had been found to match well with the orientation of 
the prominence in many cases (Bothmer & Schwenn, 1994). The discovery of cold prominence material in 
a small fraction of a magnetic cloud at Earth (Larson et al., 2000) indicates that prominence and magnetic 
cloud are not a one-to-one equivalent. Combining coronagraphic observations with SoHO and statistical 
surveys showing that the typical radial size of a MC is 0.21 AU (e.g., Lepping et al., 2006) enabled the dis-
covery that MCs are associated with the dark cavity of the three-part CME structure (Illing & Hundhaus-
en, 1985) observed remotely in the corona.

Another important contribution to understanding the origin of ICMEs is the observation of enhanced so-
lar wind 3He2+ within ICMEs. Ho et al. (2000) identified six enhanced 3He2+/4He2+ periods from January 
1995 to May 1998, using data from the MASS high resolution solar wind spectrometer on Wind. The ratios 
observed in these events were four to 10 times higher than previously reported average solar wind values. It 
was suggested that these enhancements originated in the prominence core embedded within the CME. In 
a separate event, Wind/MASS high-mass resolution measurements of helium ions, including their number 
density, velocity and temperature, revealed the presence of 4He+ ions, and SWICS observed unusually low 
charge states of O5+ and Fe5+, during a short interval within an MC apparently composed of cold promi-
nence material (Burlaga et al., 1998).

The 3DP instrument’s ability to measure thermal, suprathermal and energetic electrons allowed Wind to 
provide some of the first measurements of extremely cold (temperature down to below 1  eV) electrons 
inside MCs (Larson et al., 2000). Because Wind is a spinning platform, careful analysis of the spacecraft 
potential with similar measurements of proton temperatures allowed Larson et al. (2000) to presented the 
first experimental observation of collisionally coupled electrons and protons in interplanetary space.

To probe the internal structure of MCs, Shodhan et al. (2000) used observations of suprathermal electrons 
from Wind and several other spacecraft to assess the fraction of time when bidirectional versus unidirection-
al electron strahl flows were present during the passage of MCs. This classification indicates the presence of 
looped field lines rooted at the Sun at both ends versus open field lines, respectively. The fraction of bidirec-
tional flows was found to vary widely from no bidirectional streaming to ∼100%, with the largest MCs being 
the most closed. The different flows were also distributed randomly within the MCs. These results suggest 
that although MCs are large-scale coherent structures, reconnection, either near the Sun or with the IMF, 
sporadically alters the field topology from closed to open. A separate analysis technique was also used to 
investigate the open/closed field line nature of MCs. By measuring the arrival time and velocity dispersion 
of suprathermal and energetic electrons (100 eV–100 keV) associated with a series of impulsive solar flares 
that fortuitously were injected into the footpoints of a MC as it passed over Wind in October 1995, Larson 
et al.  (1997) estimated the path lengths traveled by these electrons at different locations within the MC. 
These were overall found to be consistent with a low-twist core and a more highly twisted outer shell, as 
expected for a flux rope configuration as shown in Figure 12. On the other hand, Kahler et al. (2011) applied 
a similar method to eight MCs and found a poor correlation between the inferred electron path lengths 
and those expected from MC field models, with the exception of the event studied by Larson et al. (1997). 
Note that the fitting discussed here refers to the model path length in Figure 12d and not to the magnetic 
field magnitude in panel a which is evidently a poorer fit to the observed field magnitude. We note that a 
critique of the magnetic field magnitude fit is not appropriate here as we are reporting the main findings 
of this work.
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Fitting and reconstruction techniques are needed to determine the global structure of ICMEs and MCs 
from single-spacecraft crossings. In the best cases, MCs are well-ordered (single flux ropes) and they can be 
readily modeled by a variety of techniques. Although spheromak-like plasmoid models have been proposed 
for MCs (Vandas et al., 1993), work has focused on flux rope models of various levels of sophistication (Bur-
laga, 1988; Farrugia et al., 1993; Hidalgo et al., 2002; Lepping et al., 1990; Marubashi, 1986). Frequently, MC 
are reconstructed by neglecting expansion or cross-section distortion. In particular, Lepping et al. (1990) 
developed the most commonly used in situ reconstruction technique in which the magnetic structure is 
assumed to be a static, axially symmetric cylinder that can be approximated by a linear force-free magnetic 
configuration (Burlaga, 1988; Lundquist, 1951). Following the same geometrical assumptions, but relaxing 
the force-free requirement, Hidalgo et al. (2000) derived a family of models that attempt to reproduce the 
varying physical and geometrical characteristics of MCs found in in situ data (Hidalgo et al., 2002; Hidal-
go & Nieves-Chinchilla, 2012; Nieves-Chinchilla et al., 2012, 2016). However, it is not yet clear whether 
any one of these models is sufficiently realistic to describe the observed variety of MC signatures. Wind 
measurements of the magnetic field and plasma pressure have resulted in the development of MC analysis 
techniques that go beyond force-free approximations to extend to magneto-hydrostatic equilibrium through 
the Grad-Shafranov technique (e.g., Hu & Sonnerup, 2001). This was first applied to Wind measurements 
of magnetic clouds by Hu and Sonnerup (2002) and has been used extensively since. However, recent com-
parisons of various fitting and reconstruction models, both for general (Al-Haddad et al., 2013) and simple 
ICMEs (Al-Haddad et al., 2018), have highlighted that different techniques do not return consistent results 
for the ICME orientation. While this result may appear pessimistic, we emphasize a couple of positive 
consequences: (a) with the large number of reliable and complete measurements of MCs and ICMEs over 
25 years by Wind, fitting and reconstruction models have been developed and improved to better integrate 
physics, that is, moving away from a constant-alpha force-free circular cross-section model, (b) comparative 
studies have highlighted that work using a single fitting or reconstruction technique may lead to unreliable 
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Figure 12.  Analysis of the length of magnetic field lines inside an MC measured by Wind for the October 18–20, 
1995 ICME (Larson et al., 1997). The figure is taken from Kahler et al. (2011), which was adapted from the Larson 
et al. (1997) study. The panels show from top to bottom, the magnetic field strength with results from the force-free 
model in red (a), the flux of suprathermal electrons for various energies between 135 eV and 100 keV propagating anti-
parallel to the magnetic field from 3DP (b), the wave power of solar radio emissions observed by WAVES (c) including 
multiple type III bursts, some associated with the electron injections in (b), and the derived field line length in AU for 
each of these bursts with the modeled length from the force-free model of panel (a) in red (d).
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results when comparing MC orientation with the orientation of the related prominence and flux rope at the 
Sun.

Gopalswamy, Yashiro, et al. (2015) and Nieves-Chinchilla et al. (2018) used Wind data to elucidate proper-
ties of MCs during solar cycles 23 and 24 (e.g., see Table C1 in Appendix C). Of particular importance is the 
relation between ICMEs or MCs measured at L1 and the solar activity, which was weaker in cycle 24 than 
cycle 23 with an extended deep minimum in 2007–2009. Although the average sunspot number declined by 
∼40% between solar cycles 23 and 24, there was no decline in the number of MCs in cycle 24 compared with 
cycle 23 (see Figure 13). However, of the intense geomagnetic storms (Dst < −100 nT), ∼80% were associat-
ed with ICMEs and the majority associated with MCs was significantly lower in solar cycle 24 as compared 
to solar cycle 23 (Gopalswamy et al., 2020; Jian et al., 2018; Shen et al., 2017). Some of this reduction in 
geo-effectiveness in cycle 24 as compared to cycle 23 may be related to the 22-years cycle in bipolar MCs (Li 
et al., 2018) and also associated with the weaker magnetic fields inside MCs, and the shorter MC duration, 
during solar cycle 24 (Lepping et al., 2011). Wood et al. (2017) used Wind in situ observations of MCs in con-
junction with observations from the coronagraphs and Heliospheric Imagers on the STEREO spacecraft to 
track 31 MCs from the Sun to near 1 AU and compare the properties of the MCs with the associated erupting 
flux ropes at the Sun. They found that the flux rope orientations and sizes inferred from imaging near the 
Sun were not well correlated with those of the in situ MCs. This has significant implications for attempts 
to predict MC magnetic fields and their geoeffectiveness from observations of the solar source regions (e.g., 
Savani et al., 2015). However, the arrival times at 1 AU were well predicted.

Estimates in the literature of the fraction of ICMEs that include MCs vary from ∼15% to 80% (Bothmer & 
Schwenn, 1996; Gosling et al., 1990; Marubashi, 2000; Mulligan et al., 1999; Richardson & Cane, 2004). 
Long-term statistical studies including observations during the Wind mission make it possible to reconcile 
these various studies by recognizing that the fraction of MCs varies with with the solar cycle (Lepping, Wu, 
Berdichevsky, & Kay, 2018; Lepping et al., 2020; Richardson & Cane, 2004).

The several hundred ICMEs measured by Wind also allow the characteristics that distinguish MCs from 
those with more complex magnetic structures to be better defined (Nieves-Chinchilla et al., 2018). Non-MC-
like configurations may arise in several circumstances: the ICME may result from the interaction of several 
individual ICMEs on their way to Earth (Burlaga et al., 2002; Lugaz et al., 2007), or if the magnetic field 
configuration of the original CME was more complex than a simple flux rope. For example, a MC may be a 
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Figure 13.  Occurrence of magnetic ejecta (e.g., MCs) per year near 1 AU as compared to sunspot number. Top panel: 
sunspot number showing the weaker solar maximum in 2012–2014 as compared to 2000–2002. Middle and bottom 
panels: number of flux-rope like ICME (F, middle) and complex ICMEs (Cx, bottom) from Wind.
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substructure of a more extended ICME region (Richardson & Cane, 2010) and not encounter the observing 
spacecraft. The absence of the flux rope signatures can be explained by the spacecraft encountering the MC 
far from the center axis or in the flux rope leg. Magnetic flux erosion by reconnection at the front of the mag-
netic ejecta may also erase the clear flux rope signature (Dasso et al., 2007; Kilpua et al., 2011; Ruffenach 
et al., 2012). Some studies classify a subset of ICMEs that meet some but not all the magnetic and plasma 
signature of MCs as “MC-like” or “flux rope like” (Gopalswamy, Yashiro, et al., 2015; Lepping et al., 2005; 
Wu & Lepping, 2015). One of the first detailed studies of an ICME with signatures of complexity was made 
by Lepping et al. (1997). Wind instruments measured a coherent structure with an embedded shock in the 
back half of the structure. This complex event triggered an intense geomagnetic storm for which the joint 
measurements by Wind and Polar provided a new coupling function between the solar wind and the mag-
netosphere (Farrugia et al., 1998; Takeuchi et al., 2000).

The Lepping et  al.  (2003) catalog of MCs has been central to numerous statistical studies (Démoulin 
et al., 2013, 2016; Janvier et al., 2019; Lepping et al., 2017; Lepping, Wu, Gopalswamy, & Berdichevsky, 2008, 
among others) and is based on the approximation of MCs as simple, circular flux rope in force-free equi-
librium. The results from the analyses have shaped two different MC catalogs, both included on the Wind 
webpage https://wind.nasa.gov/ICMEindex.php These catalogs provide fitting parameters for most entries. 
These parameters include magnetic field strength, closest approach (or impact parameters), orientation as 
well as measures of the goodness of the fit for all Wind MC measurements.

Results from these catalogs include data-driven models of typical MCs and shocks (Démoulin et al., 2016), 
studies of the importance of expansion to understand MC measurements (Lepping, Wu, Gopalswamy, & 
Berdichevsky, 2008) as well as investigations of the impact of the distance of closest approach on the space-
craft measurements (Démoulin et al., 2013; Lepping et al., 2017). These studies revealed that the cross-sec-
tion of MCs is in fact noncircular (Démoulin et al., 2013, 2019) and the distribution of magnetic field line 
twist may be more complex than that derived from a force-free model (Lanabere et al., 2020). These results 
have led to the development of several new models which incorporate more complex magnetic field struc-
tures and cross-sections.

The Nieves-Chinchilla et al. (2018) catalog also provides the internal flux-rope physical properties as well 
as the orientation and closest approach based on the model and reconstruction technique described in 
Nieves-Chinchilla et al. (2016). The statistical study published by Nieves-Chinchilla et al. (2019) revealed 
the remarkable spatial complexity of ICMEs. Figure 13 displays the occurrence of ICMEs with complex 
topology (bottom), with clear flux rope signatures (middle) and both populations compared with the sun-
spot number over the Wind mission. It has been shown by Li et al. (2018) that the orientation of ICME flux 
ropes follow orientation of the heliospheric current sheet, confirming the results of previous studies (e.g., 
Mulligan et al., 1998) based on visual inspection that found a Hale cycle dependence of the reversal in the 
flux rope poloidal field.

In combination with measurements from Wind, in situ measurements from STEREO, Parker Solar Probe, 
MESSENGER, Venus Express, and Solar Orbiter reveal the heliospheric dynamic evolution of the internal 
structure of MCs. The evolutionary signatures of evolution include distortions, deformations, rotations, 
deflections, and deviations from self-similar expansion or radial propagation (Good et al., 2019; Kubicka 
et al., 2016; Lugaz et al., 2020; Nakwacki et al., 2011; Nieves-Chinchilla et al., 2012; Salman et al., 2020; 
Vršnak et al., 2019; Wang et al., 2018; Winslow et al., 2016). These analyses use data from spacecraft that 
are radially aligned or in quadrature, giving multi-point or multi-view observations of the evolving MC, 
respectively.

In summary, Wind has made important contributions to the study of ICMEs ranging from confirming the 
fundamental association between CMEs and ICMEs and understanding the complexity of their structures 
and related space weather effects, through to the multi-spacecraft studies that are possible in conjunction 
with new missions in the inner heliosphere and beyond.

3.8.3.  Corotating Interaction Regions

Wind observations of CIRs and SIRs near 1 AU have helped researchers confirm that not only are particles 
accelerated by these structures, the acceleration need not require a local shock. Furthermore, they have 
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found that the structures evovle on much shorter time scales than the 
solar rotation period. In this section, we review some of these highlights 
of CIR and SIR research using Wind observations.

A CIR (e.g., see Richardson et al., 2018, for a recent review) is formed by 
the interaction of a high-speed solar wind stream (HSS) originating in a 
coronal hole at the Sun with the preceding slower solar wind (e.g., see Fig-
ure 14 for illustration). The term SIR is often reserved for those interac-
tion regions that do not recur on two or more solar rotations, though SIR 
and CIR are also used interchangeably. This interaction forms a region of 
compressed solar wind—the CIR—that lies along the leading edge of the 
high-speed stream and has an approximately spiral configuration. CIRs/
HSSs corotate with the Sun and may recur for several solar rotations. Ex-
pansion of the CIR may lead to the formation of a corotating forward 
(reverse) shock at the CIR leading (trailing) edge. These shocks usually 
form beyond 1 AU (Smith & Wolfe, 1976) but occasionally are found at 
1 AU (e.g., Jian et al., 2006). They are also important drivers of geomag-
netic activity, accounting for around 10% of major geomagnetic storms 
(Alves et al., 2006; Zhang et al., 2007). They can also generate extended 
(several day) periods of enhanced geomagnetic activity, driven by inter-
mittent southward magnetic fields associated with Alfvenic fluctuations 
propagating outward from the Sun, as they pass over Earth (Tsurutani 
et al., 2006), which in turn may lead to the acceleration of MeV electrons 
in the outer radiation belts (Baker & Kanekal, 2008; O’Brien et al., 2001). 
Such “killer electrons” are often associated with spacecraft anomalies or 

failures (e.g., Wrenn et al., 2002).

Jian et al. (2006) summarize the properties of 365 SIRs (some of which are CIRs) at 1 AU during 1995–2004 
using Wind and ACE data, and provide a catalog of these events and their properties. They emphasize the 
use of the total (magnetic and plasma) pressure perpendicular to the magnetic field direction as an aid to 
identifying interaction regions, with a local pressure peak being a characteristic feature of the stream inter-
face (Forsyth & Marsch, 1999) separating slow and fast solar wind plasma. They found that ∼17% (5.75%) 
of interaction regions at 1 AU had only a forward (reverse) shock, and 1.37% had a forward-reverse shock 
pair. An extended catalog of 588 CIR/HSS during 1995–2017 has been compiled by Grandin et al. (2019) 
using a detection algorithm applied to OMNI data which incorporates Wind observations. They also show 
superposed-epoch analyses of the solar wind parameters and geomagnetic activity associated with these 
structures for different phases of solar cycles 22–24, noting for example, cycle to cycle variations in their oc-
currence and properties, such as the lower geoeffectiveness of CIRs/HSS in cycle 24 due to lower magnetic 
field strengths and lower stream speeds (e.g., see Figure 15).

Although CIRs and HSSs are long-lived structures corotating with the Sun, they do evolve on shorter time-
scales, for example due to changes in the configuration of the source coronal holes and development of the 
stream interaction. Several studies have used data from Wind and other spacecraft separated from Earth to 
study this evolution. For example, Jian et al. (2009) examined a CIR in August 2007 that was observed in 
succession by STEREO B, 10° east of Wind, then by Wind, and by STEREO A, 15° to the west; the space-
craft were only separated by 2° in heliolatitude. Figure 16 shows the differences in the profiles of various 
solar wind parameters at each spacecraft (the CIR is indicated by enhanced magnetic fields and plasma 
densities on the leading edge of the HSS) and the varying locations of a crossing of the heliospheric current 
sheet (HCS) – The boundary that separates the two magnetic polarities or hemispheres of the heliosphere 
– ahead of the CIR, the stream interface (SI), and a forward shock forming at the CIR leading edge, which 
was only present at Wind, and a reverse shock forming at the CIR trailing edge, only evident at STEREO (b) 
Occasionally, a MC interacts with a CIR, as in the example discussed by Farrugia et al. (2011). Observations 
from Wind and both STEREO spacecraft, separated by ∼40° in heliolongitude, illustrate the distortion and 
rotation of the MC that resulted from this interaction.
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Figure 14.  Cartoon of stream interaction region (SIR) and/or corotating 
interaction region (CIR). The black arrows indicate velocity and the solid 
lines represent magnetic field lines. The thick magenta and blue arrows 
indicate the local, outward normals of the expanding compression region 
that can form a forward and reverse shock, respectively, as the SIR/CIR 
propagates further away from the sun.
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Figure 15.  Yearly number of high speed streams in various peak speed ranges (minimum 500 km/s) with the sunspot 
number for solar cycles 23 and 24 superposed, showing the tendency for HSS to be most frequent during the declining 
phase of the cycle and the generally lower peak speeds in cycle 24 versus 23 (Adapted from Grandin et al., 2019).

Figure 16.  A CIR and HSS observed in turn by STEREO B (left), Wind (center) and STEREO A (right), illustrating the differences in various solar wind 
parameters observed over a heliolongitude range of only 25°. The parameters shown are (from top) the solar wind speed (Vp), proton density (np) and (np) and 
temperature (Tp), entropy (  3/2ln | |p pS T n ), magnetic field intensity (Bo), the ratios of the radial and transverse components of the magnetic field to field to By, 
and the total perpendicular pressure (Pt) (Adapted from Jian et al., 2009).
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Such studies about CIRs and SIRs Jian et al. (2009) have highlighted a number of important aspects of the 
variability of corotating solar wind streams: (a) their properties, including the presence/absence of shocks, 
can vary significantly close to the ecliptic even with small latitudinal separations as the slow and fast wind 
streams are tilted and the interaction region can have a complex 3D shape, (b) their properties can have 
large variations on moderate timescales (∼6–24 h); some of this variability is likely to be associated with the 
changing boundaries and magnetic field distribution of equatorial coronal holes at the Sun (the source of 
the fast solar wind streams), (c) Earth (or 1 AU in general) is situated in a place where the interaction pro-
cess between slow and fast streams is still ongoing. As such, small variations in longitude, latitude or radial 
distance can result in significant differences in the SIR/CIR properties, in a way which is not necessarily 
clearly understood yet. While Wind prograde orbits in 2000–2002 can be used for such studies, there have 
not been any dedicated measurements of the solar wind 0.5–5° from the Sun-Earth line since, except for a 
few months of STEREO measurements after launch in 2007.

Broiles et al. (2012) used observations from Wind and ACE to search for planar magnetic structures in 153 
CIRs and, from their orientation, inferred the tilt of the CIR, which might be expected to reflect the ori-
entation of the fast-slow stream interaction. The mean azimuthal tilt was found to be consistent with the 
average Parker spiral direction. Average out-of-the-ecliptic tilts were ∼20° both north or south, but these 
values often changed significantly between successive recurrences of the same stream. Such studies for 
example raise questions about using observations from a spacecraft monitoring the solar wind, and par-
ticularly CIRs/HSS, at a location east of Earth (e.g., L5) to provide an advance forecast of near-Earth solar 
wind conditions. They also suggest the presence of a complex, evolving, structured solar wind in the inner 
heliosphere that can be studied by Parker Solar Probe and Solar Orbiter in conjunction with observations by 
Wind and other spacecraft at 1 AU.

Several studies of energetic particles associated with CIRs have been made with Wind/EPACT. For example, 
(Mason et al. 1997, 1999) used measurements from Wind/EPACT to demonstrate that the spectra of ener-
getic particles do not show the depletion of low energy ions expected (Fisk & Lee, 1980) if the particles were 
accelerated at CIR shocks at several AU (Barnes & Simpson, 1976). That is, the particles would lose energy 
due to adiabatic deceleration in the expanding solar wind whilst propagating sunward to the spacecraft. In-
stead, observations suggest the particles are accelerated closer to the spacecraft. Chotoo et al. (2000) found 
that the spectra of energetic particles in the vicinity of CIRs merged with the suprathermal tail of the solar 
wind ion distribution, also suggesting that the particles were accelerated relatively local to the spacecraft, 
possibly out of the solar wind distribution. Ebert et al. (2012) used EPACT/STEP observations of suprath-
ermal He ions to show that acceleration occurred near the trailing edges of two well-developed CIRs. One 
of the CIRs was associated with a reverse shock, while the other was not. This surprising result suggests 
that particle acceleration at CIRs does not require the presence of a shock. Filwett et al. (2017) investigated 
suprathermal heavy ion abundances at 41 CIRs using STEP. The authors concluded that the upper limit on 
the distance traveled from the source to the spacecraft was 1 AU, which is consistent with a relatively local 
source. Filwett et al. (2017) also found evidence for enhanced Fe abundances in CIR-associated particles at 
higher solar activity levels. Their result suggests that Fe-rich particles from impulsive solar events contrib-
ute to the source of CIR particles. Interstellar pick up ions—interstellar neutrals that are ionized near the 
Sun—such as He+ (Chotoo et al., 2000), may also be accelerated at CIRs (Chen et al., 2015). Reames (2018), 
using EPACT/LEMT data, concluded that the element abundances of CIR-accelerated ions mirror the solar 
wind abundances with a modification depending on the mass to charge ratio of the ions.

3.9.  Solar Energetic Particles

The Wind EPACT/LEMT instrument was the first to detect ultra-heavy (34 ≤ Z ≤ 82) ions in impulsive solar 
particle events accelerated by solar flares and jets. Wind’s longevity has given researchers a unique opportu-
nity to examine SEP abundances at lower masses over extended time periods. In this section, we highlight 
some advances made by Wind on the topic of SEPs.

The Wind EPACT instrument has made observations of solar energetic particles or SEPs throughout the 
mission lifetime (e.g., see Reames, 2017, and references therein). First, we highlight one result that illus-
trates the ability of the EPACT/LEMT instrument to detect, for the first time, ultra-heavy (34 ≤ Z ≤ 82) ions 
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in impulsive solar particle events accelerated by solar flares and jets. With a large collecting geometry, a large 
dynamic range above ∼2 MeV amu−1, and a pulse-height analysis scheme that prioritizes Z > 33 particles, 
LEMT is ideal for heavy element detection. It was well-established by previous missions that smaller and 
shorter duration “impulsive” SEP events accelerated by solar flares exhibit remarkable enhancements in the 
abundances of 3He and heavy ions compared to coronal abundances. LEMT observations (Reames, 2000; 
Reames & Ng, 2004) demonstrate that these abundance enhancements extend to ultra-heavy ions.

Figure 17, from Reames and Ng (2004) shows the increase in the ion abundance enhancement relative to 
coronal abundances with increasing Z. Clearly, the ultra-heavy ions continue the trend evident for ions 
lighter than iron (filled circles are LEMT data, open circles are from previous missions). Figure 17 (right) 
shows that the abundance enhancements decrease with increasing Q/A, where a coronal temperature of 
3 MK is assumed to estimate the charge states. Note that the enhanced but low charge state 3He does not fit 
these trends, suggesting that the 3He enhancement arises from a separate process. Remarkably, the strong-
est heavy ion enhancements are associated with the smallest impulsive events associated with the weakest 
solar flares and softest particle spectra (Reames & Ng, 2004).

The reason for these heavy and ultra-heavy ion abundance enhancements is still under discussion, but they 
may occur if the ions interact with a turbulent region where there is more power at larger length scales, 
which favors the acceleration of heavier ions with larger gyroradii. A promising candidate is the formation 
of islands by reconnection (Drake et al., 2009; Drake & Swisdak, 2012), where the island size distribution 
may lead to a strong Q/A-dependence in the particle abundances. However, such a process could not ac-
count for the enhancement of 3He over 4He. This may result instead from acceleration through a resonance 
with ion cyclotron waves generated by streaming electrons (Roth & Temerin, 1997; Temerin & Roth, 1992).

The Wind mission has also allowed SEP abundances at lower masses to be compared over an extended 
time period. For example, Reames et al. (2014) show, for 8 h intervals during a 19 year period, a range of 
values of Ne/O and Fe/O (both normalized to typical values in large SEP events) at ∼3 MeV/nucleon. The 
observations show evidence for a bimodal distribution, with a group of periods with enhanced Fe and Ne 
abundances likely to be associated with impulsive SEP events and another, larger, group with abundances 
similar to those in large SEP events, associated with gradual events. However, intervals with intermediate 
values are also present.

Considering particles accelerated by interplanetary shocks, Reames  (2012) studied the spectra of ∼1–
10 MeV/nucleon 4He at 258 shocks in the CfA Wind shock database (https://www.cfa.harvard.edu/shocks/
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Figure 17.  Abundance enhancements in average large impulsive events relative to coronal abundances, shown as a 
function of atomic number, Z, and charge-to-mass ratio, Q/A, at ∼3 MK. The solid circles are from the study by Reames 
and Ng (2004) and open circles are from previous studies (Adapted from Figure 4 in Reames & Ng, 2004).
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wi_data/) with the aim of determining which shock parameters are more important to produce particle 
acceleration. Only 39 (∼15%) of these shocks had significant particle acceleration to these energies, and the 
shock speed was found to be the strongest determinant of the particle intensity at the shock followed by the 
shock compression ratio; quasi-perpendicular shocks were also favored.

3.10.  Solar Radio Bursts

Before the launch of Wind, type II bursts were known in only two domains: metric (>15 MHz) from ground-
based observations, and hectometric-kilometric (<2 MHz) from space-based observations (e.g., see discus-
sion in Maroulis et al., 1993, and references therein). These frequencies correspond to spatial domains of <2 
Rs and > 10 Rs from the Sun center. The Wind/WAVES experiment is capable of observing radio emission 
in ∼2–14 MHz range and determining the direction to the emission source region. Thus, Wind/WAVES 
filled a previous observational frequency gap and narrowed down the source regions of these emissions, 
resulting in a number of new discoveries that will be highlighted in this section. The coronal domain sam-
pled by Wind/WAVES overlaps with that imaged by space-borne coronagraphs. A quarter century of Wind/
WAVES observations and white-light observations from the Solar and Heliospheric Observatory (SOHO) 
mission have contributed enormously to our understanding of solar eruptions and their heliospheric con-
sequences. The combined radio and coronal imagery were enhanced with the addition of STEREO in 2006, 
which greatly advanced our understanding of inner heliospheric nonthermal processes associated with 
solar magnetic active regions. All radio emissions are due to nonthermal electrons of various energies, so 
the radio bursts provide key information not only on the particle energization process but also on the am-
bient medium in which the electrons propagate and produce the radio signatures. Note that in this section, 
we intentionally refer to both coronal mass ejections (CMEs) and interplanetary coronal mass ejections 
(ICMEs). The former refers to CMEs observed using coronal imagers and the later to those observed with in 
situ plasma measurements (see Section 3.8.1).

Nonthermal radio signatures in the IPM are simple compared to those in the corona (<2 Rs). Most of 
the IP radio emissions arise from the plasma emission mechanism (i.e., nonthermal electron beams ex-
cite Langmuir-like waves which nonlinearly mode convert to free electromagnetic radio emissions at 
frequencies near the plasma frequency of their source region), whereas near the Sun additional mecha-
nisms such as cyclotron emission, gyrosynchrotron emission, and bremsstrahlung emission operate. Early 
Wind studies showed that nearly all the known radio burst types (e.g., type II, type III, and type IV; see 
review by Wild et al., 1963) were observed by the WAVES radio receivers (Bale et al., 1999; Gopalswamy 
et  al.,  1998,  2001,  2001; Gopalswamy,  2004a,  2004b; Gopalswamy & Mäkelä,  2010; Kaiser,  2003; Reiner 
et al., 1998, 2001). Type I radio bursts occur at higher frequencies than can be resolved by Wind/WAVES, so 
they will not be discussed herein.

Type III bursts occur as regular, frequency-drifting radio emissions and as type III storms. Type III storms 
typically start in the metric domain (around 80 MHz) in association with type I storms at higher frequencies 
but extend down to sub-MHz frequencies. Type III storms are characterized by broadband (>few MHz), 
very short duration (i.e., ≲1–2 min) emissions that occur in rapid succession (typically > 10 per hour). Type 
III bursts are characterized by their fast frequency drift (i.e., MHz per minute) versus time, which is a tracer 
of the gradient in the IP electron number density. Type III storms are caused by nonthermal processes tak-
ing place in active regions outside of eruptions. Both type III storm bursts and regular type III bursts result 
from emissions due to nonthermal electrons propagating along open magnetic field lines. Type II bursts 
are caused by nonthermal electrons accelerated by CME-driven shocks. Type II bursts are characterized by 
their slow frequency drift (i.e., few 100s of kHz per hour) versus time, which is a tracer of the shock speed 
and electron number density upstream of the shock. Type IV bursts are thought to be due to nonthermal 
electrons trapped in post-eruption arcades (i.e., half-loop-like arches of intense magnetic field connecting 
to active regions on the solar surface) in the eruption site. Type IV bursts are characterized by a broadband 
frequency emission in the several to >10 MHz range, sometimes showing a U-shaped profile.

Figure 18 shows a solar eruption that exhibits all the IP burst types: type III storm, type III burst, type IV 
burst, and type II burst. All the burst types are associated with complex magnetic regions on the Sun. All but 
the type III storm are associated with solar eruptions involving CMEs and solar flares.
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3.10.1.  Type II Bursts

As previously stated, type II bursts result from nonthermal electrons accelerated by CME-driven shock 
waves. Thus, they are a tracer of the shock speed/position versus time and of the electron number density 
immediately upstream of the shock front. Remotely tracking shocks using radio waves is an important ele-
ment of our space weather forecasting infrastructure. It also provides information on the radial gradient of 
the IP electron number density, critical for heliospheric models. Therefore, it is important to understand the 
origin and evolution of the frequency drifts of type II bursts.

Type II bursts can exist in the decametric-hectometric (DH), metric (m), and km wavelength range. Inter-
estingly, there are type II bursts that start in the m range and evolve to the DH range (i.e., meter to DH or 
m-DH range) while other DH type II bursts are not continuations of m type II bursts. Some type II bursts 
start in the DH range and end there as well, called pure DH type II bursts. Some type II bursts occur in the 
m and DH ranges simultaneously while others start in the m range and evolve to the DH and onto the km 
range. Finally, there can be purely km type II radio bursts (Gopalswamy, 2004a; Gopalswamy et al., 2000; 
Kaiser et al., 1998; Reiner & Kaiser, 1999). Thus, initially there was a mystery as to the source of the diversity 
in type II radio bursts.

The mystery was resolved in a subsequent investigation by Gopalswamy et al. (2005) who found that the 
wavelength extent of type II bursts depends on CME kinematics, that is, their speed and acceleration/
deceleration. The authors showed that the frequency/wavelength of the radio emissions depends upon the 
CME speeds where the emission ranges and speeds (averages from multiple events) were: ∼610 km/s (m), 
1,068 km/s (m-DH, DH, and DH-km combined), 1,490 km/s (m-to-km), and 540 km/s (purely km). When 
examining coronal images using the SOHO coronagraphs, Gopalswamy et al.  (2005) observed all CMEs 
decelerated in the coronagraph FOV except those associated purely km type II bursts. These accelerated to 
super Alfvénic speeds at tens of Rs from the Sun.

Simultaneous type II bursts at different frequencies

Further investigation after the accumulation of numerous type II bursts showed the simultaneous occur-
rence of two type II bursts: one in the DH domain that evolved from the m domain and one starting in the 
DH domain and continuing to the km domain. Gopalswamy (2011) reported on one such CME-associated 
event on June 17, 2003 where the inferred source height of the m-DH component (from the Sun center) 
was ∼2.4 Rs and the DH-km type II was at ∼7 Rs. A possible explanation proposed was a curved shock front 
where the nose was at ∼7 Rs and the Rs and the flanks at ∼2.4 Rs (e.g., see the shock surrounding the flux 
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Figure 18.  Four types of radio bursts observed by Wind/WAVES on January 15, 2005 toward the end of the day: type 
III storm was in progress when the eruption occurred. The eruption is marked by the regular type III burst, followed by 
a type II burst and a type IV burst. (right) The associated CME observed by SOHO/LASCO. The CME has a flux rope 
driving a shock as indicated. The shock is at a heliocentric distance of ∼25 Rs in sky-plane projection (Adapted from 
Gopalswamy, 2016).
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rope in Figure 18). The CME was very fast (∼1,800 km/s), so the flanks are also fast enough to drive shocks 
and accelerate electrons. The flanks are at lower altitudes (where the higher electron density corresponds 
to higher emission altitudes (lower electron density corresponds to lower emission frequency). The Go-
palswamy (2011) study is supported by an earlier study by Raymond et al. (2000) of a slower CME (only 
∼1,300 km/s, thus without flank shocks), only showing type II bursts in the m domain.

Wind/WAVES is also capable of determining the direction from which a radio emission propagated to the 
spacecraft (Hoang et al., 1998). This analysis has been applied to another fast CME (∼1,900 km/s) on July 
6, 2012 with both m-DH and DH-km domain type II bursts (Mäkelä et al., 2018). The authors also used the 
same technique using STEREO to confirm the source regions to be near the nose of the CME shock. Thus, 
these studies support the nose-flank emission source regions, in contrast to another model that invokes a 
second shock—the flare blast wave—to explain the metric emission.

Type II burst dependence on ICME properties

Another curiosity is that not all CMEs have an associated type II burst. By the end of 2019, Wind/WAVES 
has observed more than 500 bursts at frequencies below 14  MHz. Even so, early work of ∼100 events 
revealed that type II bursts are associated with fast (>900  km/s) and wide (>60°) CMEs (Gopalswamy 
et al.,  2000, 2001). Later work noted that the average CME speed in the sky plane of coronagraphs has 
increased to ∼1,164 km/s due to the energetic CMEs during the maxima of cycles 23 and 24 (Gopalswamy, 
Mäkelä, & Yashiro, 2019).

An interesting correlation was observed between the initial deceleration and initial speed of CMEs asso-
ciated with type II bursts. The CMEs were found to decelerate in the coronagraph FOV at ∼0–100 m s−2, 
where the deceleration is correlated with initial speed (Gopalswamy et al., 2001). Later work confirmed the 
correlation between initial deceleration and initial speed using the frequency drift rate of the observed type 
II bursts (Reiner, Kaiser, & Bougeret, 2007; Zhao et al., 2019).

Given that CMEs are strongly coupled to the solar cycle, examinations of DH type II bursts showed a solar 
cycle variation with maximum rates of ∼10 bursts per Carrington rotation (∼27.3 days)—the approximate 
rotation period of low solar latitudes—during solar maximum. However, no DH type II bursts were ob-
served in the lowest part of solar minimum (Gopalswamy et al., 2020). Interestingly, the occurrence rate 
of type II bursts depends upon the CME properties (i.e., fast and wide CMEs produce type II bursts) rather 
than the sunspot number (SSN). Gopalswamy et al. (2020) showed that the decrease in SSN between solar 
cycles 23 and 24 was ∼39% while the decrease in type II bursts was ∼48%. The authors argued the decrease 
in fast and wide CMEs was also ∼48%, illustrating the connection between the CMEs and type II bursts.

Shock arrival prediction using type II bursts

Recall that type II bursts are a tracer of the shock speed/position versus time and of the electron number 
density immediately upstream of the shock front. Thus, researchers can use the frequency drift rate, 

df
dt

, as 

a function of time to examine the evolution of the associated ICMEs and the density gradients in the IPM. 
Aguilar-Rodriguez et al.  (2005) showed that the drift rate followed a power law of the form | |df f

dt
, 

where the exponent ɛ ∼ 1.8 for the entire wavelength domain (m to km) and was higher in the km domain 
(2.7 at f < 1 MHz), and lower at m-DH domain (1.5 at f > 1 MHz). The different exponents in the different 
spectral domains reflect the CME/ICME evolution at different distances from the Sun (Gopalswamy & 
Mäkelä, 2011; Vršnak et al., 2001). Initially ICMEs accelerate into a more and more tenuous region which 
results in a smaller ɛ. Further from the Sun, ICMEs decelerate which increases ɛ. The evolution of the 
ICME shocks and influence on ɛ have been supported by case studies (e.g., Gopalswamy, Mäkelä, Akiyama, 
et al., 2018; Liu et al., 2013).

After type II bursts reach the km range their evolution is more consistent with a constant IP shock speed, 
thus allowing researchers to predict the shock arrival time at Earth. Cremades et  al.  (2015) combined 
coronagraph images of CMEs, type II radio emissions in the km range, and in situ information on shocks to 
investigate the height-time history of 71 IP shocks. The authors were able to predict the shock arrival time 
within ∼6 h for 85% of the events. Other studies (Corona-Romero et al., 2013) attempted to approximate the 
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shock evolution as that of a blast wave. However, the speeds of magnetic clouds (MCs) and the associated 
shocks have been shown to be highly correlated (95%) (Gopalswamy, 2006). Thus, ICMEs and their shocks 
remain coupled at 1 AU, even though both have undergone significant decelerations, which is inconsistent 
with a blast wave scenario.

Type II bursts and SEPs

Type II bursts are the earliest indicators of CME-driven shocks, and can also serve as an indicator of solar 
energetic particle (SEP) events because the same shock accelerates electrons and ions (see Section 3.9 for 
more discussion of SEPs). Recall that the observed frequency of type II bursts is strongly related to the CME 
speed. For instance, purely m type II bursts are associated with average speed CMEs satisfying ∼600 km/s 
while m-DH type II bursts are associated with >1,000 km/s CMEs. Faster CMEs tend to result in stronger 
(higher Mach number) IP shocks, which are known to be more efficient accelerators of particles (e.g., see 
discussion in Caprioli & Spitkovsky, 2014, and references therein). Therefore, investigating the relationship 
between type II bursts and SEPs was an obvious avenue for improving space weather forecasting.

Cliver et al. (2004) found that only ∼25% of purely m type II bursts are associated with >20 MeV SEP events 
but the rate almost quadrupled to 90% when a m type II had a DH counterpart. Gopalswamy et al. (2005) 
found that CMEs producing type II bursts in the m-to-km range also had high energy SEPs. Furthermore, 
all SEPs strong enough to generate a ground level enhancement (GLE)—solar particles observed by ground-
based instruments—are associated with m-to-km type II bursts (Gopalswamy et al., 2012).

Later work (Cliver et al., 2019; Gopalswamy, Mäkelä, et al., 2015; Gopalswamy, Yashiro, et al., 2016) found 
that the initial frequency of type II bursts correlated with the spectral slope of the SEP number flux versus 
energy power-law relationship. Shocks forming closer to the solar surface (i.e., with a higher initial type II 
burst frequency) had harder spectra (i.e., indicates a flatter or less-steep drop in number flux with increasing 
energy) than those forming at higher altitudes. The harder spectra SEP events are often also GLE events. 
The reason for the shock formation altitude dependence on spectral slope relates to the background plasma 
parameters in which the shock formed. At lower altitudes, the magnetic field magnitude is much larger and 
the geometry is more complicated, both of which make for more efficient particle scattering and accelera-
tion (Cliver et al., 2019; Gopalswamy et al., 2017).

Finally, the examination of type II bursts have helped us understand the source of the >300 MeV protons 
required for producing the pion-decay continuum observed as sustained gamma-ray emission (SGRE) from 
the Sun (Gopalswamy, Mäkelä, Yashiro, et al., 2018; Share et al., 2018). Gopalswamy, Mäkelä, Yashiro, et al. 
(2018) and Gopalswamy, Mäkelä, Yashiro, et al. (2019) demonstrated a close linear relationship between 
the SGRE and type II burst durations, in every SGRE event with duration > 3 h, supporting the hypothesis 
that the >300 MeV protons continue to be accelerated at the shock as it moves away from the Sun, and 
then propagate back to the Sun, generating the SGRE. However, other studies (de Nolfo et al., 2019; Klein, 
Tziotziou, et al., 2018; Malandraki & Crosby, 2018) may not support this hypothesis for the origin of SGRE.

3.10.2.  Type III Bursts

Type III bursts result from nonthermal electrons accelerated in solar magnetic active regions exciting plas-
ma waves as they stream along the magnetic field away from the Sun. Early work using triangulation be-
tween Ulysses and Wind identified the electron beam source of type III bursts, finding that the electrons 
were traveling at a speed of ∼0.3 c (Reiner et al., 1998). When the radio emission of a type III burst reaches 
the local plasma frequency of the observing spacecraft, the emission is occurring locally. Reiner and Mac-
Dowall (2015) analyzed five in situ type III radio bursts observed by Wind and STEREO, finding that the 
electron beam speed ranged from 0.2 c to 0.38 c near the Sun but was only ∼0.2 c near 1 AU. The reduction 
in beam speed corresponded to a deceleration of ∼30 km s−2. That is, the primary electrons exciting type 
III bursts near the sun correspond to energies of 20–30 keV while they drop to ≤ 10 keV near 1 AU. The re-
duction in energy is consistent with the beam losing energy as it converts kinetic energy to electromagnetic 
energy to generate the initial Langmuir waves.

Type III bursts generally accompany SEP events (e.g., Cane et al., 2002; MacDowall et al., 2003, 2009; Miteva 
et al., 2017; Richardson et al., 2018; Winter & Ledbetter, 2015, and see Section 3.9). In particular, large SEP 

WILSON ET AL.

10.1029/2020RG000714

38 of 70



Reviews of Geophysics

events are usually associated with bright, long duration, complex type 
IIIs such as that shown in Figure 19. These long-duration emissions were 
originally thought to result from electrons accelerated at or associated 
with CME-driven shocks (Bougeret et al., 1998; Cane et al., 1981). Based 
on Wind/WAVES observations, which as discussed above, closed a fre-
quency gap between ground and previous space-based instruments, these 
complex type III emissions can appear to extend from the associated type 
II bursts (Gopalswamy et al., 2000), but they are now thought to result 
from electron acceleration in magnetic reconnection below CMEs (Cairns 
et al., 2018; Cane et al., 2002; Reiner et al., 2000). Characteristics such as 
correlations between the burst duration or intensity and SEP peak inten-
sity, and their rapid onset and frequency drift following solar flares, have 
led to the inclusion of type IIIs in proposed SEP prediction schemes (e.g., 
Laurenza et al., 2009; Richardson et al., 2018; Winter & Ledbetter, 2015). 
However, these require real-time radio observations that are not available 
from Wind. The largest SEP events are usually associated with type III 
burst durations of ≳15  min at ∼1  MHz (Cane et  al.,  2002; MacDowa-
ll et al., 2009; Richardson et al., 2003, 2018; Winter & Ledbetter, 2015). 
Krucker et al. (1999) examined the relationship between type III bursts 
and energetic electrons observed in situ using Wind 3DP electron and 
WAVES observations. They found that while some near-relativistic elec-

tron events are released at the Sun at the time of the type III burst, others are apparently released up to half 
an hour later, suggesting that they originate from a different population than the type III-producing elec-
trons. Similar conclusions were reached by Haggerty and Roelof (2002), Klassen et al. (2002), and (Wang 
et al. 2006, 2016). An alternative interpretation is that the energetic electrons may be delayed during prop-
agation through the IPM (Cane, 2003; Cane & Erickson, 2003; Wang et al., 2011).

3.10.3.  Type III Storms

Solar noise storms are nonthermal radio emission due to electrons accelerated in a noneruptive energy 
release in active regions. At metric wavelengths, noise storms manifest as type I bursts, which transition 
into type III storms in the outer corona. Thus, type III storms are the low-frequency extensions of type I 
storms (Fainberg & Stone, 1970). Type III storms can last for several days and can be observed at helio-
centric distances of up to 170 Rs (Bougeret et al., 1984). Interestingly the rate of type III storms and their 
intensity increase as the source active region crosses the central meridian (Gopalswamy, 2004b; Morioka 
et al., 2015, 2007; Reiner et al., 2001; Reiner, Fainberg, et al., 2007). Further work has indicated that type 
III bursts and storms have different energization processes based upon differences in occurrence frequency 
and emitted power flux (Morioka et al., 2007).

The source regions of type III storms were later identified to be solar active regions accompanied by coronal 
holes. These are regions in which the magnetic field lines do not connect back to the solar surface but rather 
are directed outward into the IPM. The suggested mechanism (Del Zanna et al., 2011) is a type of magnetic 
reconnection called interchange reconnection—magnetic reconnection between coronal hole and adjacent, 
closed magnetic field lines that leads to the energization of low energy electrons (see Section 3.4 for details 
on magnetic reconnection). These sustain the type III storm on closed magnetic field loops and give rise to 
weak type III emission on open field lines.

Type III storms can be disrupted by CMEs for upwards of ∼10 h (see Figure 18). Gopalswamy (2016) re-
ported on a type III storm starting on January 14, 2005 that was disrupted by five CMEs (including that in 
Figure 18), with the last one being an extreme event that occurred on January 20, 2005. Following the final 
CME the type III storm did not reappear suggesting a possible reconfiguration of the active region or a 
change in the directivity of the storm or the active region complexity.

Type III storms also exhibit an interesting change in degree of polarization with radial distance. In the met-
ric range, type III storms have a degree of circular polarization of up to ∼25%. In the IPM, type III storms 
have much smaller degrees of circular polarization (<5%) at frequencies near 1 MHz (Reiner, Fainberg, 
et al., 2007). Reiner, Fainberg, et al. (2007) used the change in the degree of circular polarization to deter-
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Figure 19.  Occurrence rate of DH type II bursts May 10, 1996–December 
31, 2019 (red: cycle 23; blue: cycle 24) summed over Carrington rotation 
periods. The sunspot number is shown for comparison. Gopalswamy, 
Mäkelä, and Yashiro (2019) found that the drop in the number of events in 
cycle 24 is similar to the drop in the number of fast and wide CMEs (figure 
updated from Gopalswamy, Mäkelä, & Yashiro, 2019).
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mine the magnitude and radial projection of the magnetic fields above solar active regions. Typical magnet-
ic field strengths of ∼50 mG (or ∼5,000 nT) at a heliocentric distance of 25 Rs were Rs were calculated and 
the field strength decreased faster than the inverse-square of the radial distance. Thus, type III storms can 
be used to remotely probe the magnetic structure and strength of solar active regions.

3.10.4.  Type IV Bursts

Type IV bursts are another phenomenon that has been better understood through observations of their 
lower frequency range by WAVES in the DH frequency range. The type IV burst on May 2, 1998 studied 
by Leblanc et al. (2000) was one of the first observed down to 7.5 MHz (e.g., similar to the one shown in 
Figure  18). Gopalswamy  (2004b) studied a dozen DH type IV bursts finding they are extensions of the 
emissions in the metric range. The type IV bursts lasted typically for ∼2 h at 14 MHz with a typical ending 
frequency of ∼7.7 MHz. The type IV bursts in the DH frequency range are associated with very energetic 
CMEs (average speed ∼1,200 km/s). Further, the average speed of CMEs (∼1,500 km/s) associated with DH 
type IV bursts is similar to that in large SEP events (Gopalswamy, 2011, 2016; Hillaris et al., 2016). The most 
likely source of type IV bursts is electrons accelerated in a solar flare site that become trapped in the closed 
magnetic fields of the post eruption arcades.

More recent studies discovered that DH type IV bursts have a relatively narrow emission cone (e.g., Go-
palswamy, Akiyama, et al., 2016). That is, DH type IV bursts associated with eruptions in the middle of the 
solar disk show a symmetric time profile about their lowest frequency (i.e., the lowest frequency boundary 
of the emission is U shaped). In contrast, DH type IV bursts associated with eruptions on the limb of the 
solar disk show an asymmetric time profile. Gopalswamy, Akiyama, et al. (2016) concluded that the type IV 
emission cone is less than ∼60° in full width and that this narrow cone results from the small angular extent 
of the source region, the post eruption solar arcades. Another proposed explanation is that the shock-com-
pressed, high-density plasmas in the foreground of the emission attenuate the intensity of the type IV bursts 
more on the shock flanks than the center (i.e., due to larger line of sight integration) (Pohjolainen & Taleb-
pour Sheshvan, 2020; Talebpour Sheshvan & Pohjolainen, 2018). The reason for the narrow type IV emis-
sion cone continues to be an active area of research.

3.11.  Wind’s Relevance to the HSO and Future Research

Wind is the “standard candle” against which numerous other missions have and continue to calibrate their 
instruments (e.g., McFadden, Carlson, et  al.,  2008). Wind is a primary collaborator with NASA’s Parker 
Solar Probe (PSP) (Fox et al., 2015) and ESA’s Solar Orbiter (SolO) missions (Müller et al., 2020). The short 
∼88 day orbit of PSP and the ∼0.3–0.76 AU orbit of SolO will provide frequent radial and magnetic field 
alignments with Wind allowing for multi-spacecraft studies that will significantly enhance the science re-
turn of both PSP and SolO. Wind is also expected to play a major role in NASA’s upcoming Interstellar 
MApping Probe (IMAP) mission (McComas et al., 2018). Below we highlight some exciting new results that 
arose from the combined use of Wind and PSP.

Wind’s broad contributions to solar and heliospheric physics can be viewed through the lens of PSP’s mis-
sion objectives. PSP was launched in August, 2018 to study the origin and acceleration of the solar wind in 
the upper solar corona. PSP will not reach its minimum perihelion of ∼10 solar radii (Rs) until 2026, but 
PSP is already significantly closer to the sun than any previous mission. One method of understanding the 
evolution of the solar wind in the inner heliosphere is to compare the near-sun PSP in situ observations with 
Wind observations at 1 AU. Although these studies may require specific spacecraft alignments and are still 
in their early phase, PSP and Wind have already provided insight into the heliospheric current sheet, stream 
interaction regions, and radio remote sensing as detailed in the following.

The Heliospheric Current Sheet (HCS) varies significantly from its formation in the solar corona to its inter-
action with Earth at 1 AU. PSP observations of HCS crossings during the first solar orbit were successfully 
mapped to Wind observations at 1 AU (Szabo et al., 2020). The authors found that during this period at solar 
minimum, the HCS showed remarkable stability and could be successfully traced over full solar rotations. 
However, earlier work showed that the internal structure of the HCS exhibits a marked difference between 
solar minimum and solar maximum. Although magnetic reconnection-induced magnetic structures ap-
pear to have been present near PSP as well as near 1 AU, Szabo et al. (2020) found that the characteristics 
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of individual structures differed. Magnetic signatures were stronger and more pronounced at PSP, while 
density enhancements were more pronounced at 1 AU. SIRs can also be traced from PSP to Wind (Allen 
et al., 2020). This study demonstrated that during the first PSP orbit, SIRs formed well within 0.5 AU, and 
also determined that the associated locally accelerated Allen et al. (2020) suprathermal particles penetrate 
deeper into the fast stream further away from the sun.

Supplemented with data from STEREO and Wind, PSP radio observations of Type III radio bursts confirmed 
they are associated with energetic electron beams (Krupar et al., 2020). The radio beams showed significant 
scattering due to solar wind density fluctuations in the inner heliosphere. The predicted density fluctuation 
levels from the radio data were compared to the in situ PSP observations and yielded the same 6%–7% level. 
There are additional efforts involving SolO and Wind that are currently in preparation as of time of the 
submission of this review.

Thus, Wind continues to produce significant and relevant data that contribute to studies helping to improve 
the science output of other solar wind missions. As evidenced by the numerous recent, novel scientific 
studies referenced herein, Wind also continues to be a valuable independent mission for studies of topics 
ranging from solar wind physics, kinetic physics, remote solar and astrophysics to large-scale structures 
such as ICMEs and SIRs/CIRs. Its diverse compliment of instruments combined with their longevity and 
accuracy have made Wind a truly special resource for studies of space plasma physics.

4.  Summary
Wind launched on November 1, 1994 and has journeyed through nearly every part of the terrestrial mag-
netosphere, several hundred RE prograde and retrograde of Earth, to L2 and is now stationed at L1. Over 
its 26+ year lifetime of observations and discoveries, Wind has illustrated its importance and relevance by 
the >5,810 refereed publications, numerous discoveries and firsts, and its continued collaboration with 
multiple other missions in the HSO. Wind has made paradigm altering advances in multiple fields of study 
from gamma ray astrophysics to magnetospheric, solar wind, and solar radio physics. Wind’s longevity and 
diverse and redundant instrumentation has led to it becoming the so called “standard candle” for near-
Earth solar wind measurements.

Wind was launched with the first Russian instrument to fly on a US spacecraft, called KONUS. It was the 
first such collaboration and has been extremely fruitful leading to the identification of thousands of GRBs, 
nearly 30 magnetars or SGRs, several magnetar GFs, and the first evidence of the source of FRBs originating 
from magnetars. Wind/KONUS continues to play an active role in the gamma ray astrophysics community 
as part of the IPN and GCN.

Although Wind was not designed explicitly to detect IPD or ISD, it has accumulated >100,000 dust impact 
detections through the end of 2015, publicly available through SPDF CDAWeb. The large statistics, direc-
tional information determined from Wind, when combined with observations from the dedicated dust in-
strument on Ulysses helped researchers calculate the flow of ISD, thus the interstellar flow. The dust impact 
database has also been used in collaboration with the AIM SOFIE experiment revealing a correlation be-
tween the rate of dust impacts on Wind and AIM observations of meteoric smoke. Wind’s vital contributions 
to dust detection are expected to continue for the foreseeable future.

Wind has passed through the lunar wake on 10 separate occasions at varying distances from the surface of 
the moon. Wind’s modern instrumentation (compared to the pioneering missions that passed through the 
lunar wake) helped researchers to show that the moon, an unmagnetized body, produced a wake and that 
the plasma-body interaction was kinetic, not fluid-like. Although more recent experiments have improved 
our understanding of the lunar-plasma environment, Wind’s contributions were groundbreaking at the 
time.

Wind observations showed evidence of locally energized electrons to 100s of keV associated with magnetic 
reconnection in the geomagnetic tail. These observations led to entirely new ideas of particle energization 
in reconnection events and altered our understanding of magnetic reconnection. Wind also helped advance 
our understanding of reconnection in the solar wind showing that the exhaust regions can extend to >1,800 
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RE from the diffusion region. Again, these results were only obtained by leveraging Wind’s unique orbits and 
highly accurate instrumentation.

Wind also played a pivotal role in radiation belt physics, specifically on the topics of waves and particle 
lifetimes. Wind’s ability to accurately measure high cadence time series electric and magnetic fields allowed 
for some of the first statistical studies of large amplitude whistler waves in the radiation belts. These modes 
are thought to be critical for particle energization and loss from these regions. The waves were found to be 
orders of magnitude larger in amplitude than previously thought and caused a dramatic shift in our under-
standing of particle lifetimes in the radiation belts that was used to justify several primary science objectives 
for NASA’s Van Allen Probes mission.

Wind made major advances in the study of foreshocks as well. First Wind showed the spatial extent of the 
terrestrial foreshock was much larger than previously thought, that is, increased from ∼200 RE to >3,000 
RE. Wind observations also led to the discovery of a new TIFP called a foreshock cavity. the first to show 
that TIFPs can locally generate their own mini-foreshocks, which led to a whole new field of study and the 
later discovery that TIFPs can locally generate relativistic electrons. Given that TIFPs are thought to play a 
critical role in particle dynamics and global dynamics of both the bow shock and magnetosphere, under-
standing them is critical for space weather predictions and magnetospheric dynamics.

The diverse, redundant, and accurate array of instruments on Wind have led to major advances in our 
understanding of kinetic-scale instabilities and waves. This combined with the longevity of continuous 
measurements has even allowed researchers to tease out otherwise impossibly subtle features to reveal the 
importance of both Coulomb collisions and instabilities in the evolution of the solar wind. The longevity 
also helped researchers reduce the signal-to-noise ratio enough to test numerous previously inaccessible 
theories to find that, for instance, predictions that most solar wind VDFs are unstable. In short, Wind’s in-
strumentation and longevity have been critical to advancing our understanding of kinetic-scale instabilities 
and waves affecting multiple fields of study.

Not only has Wind greatly advanced our understanding of the comparatively coherent phenomena of in-
stabilities, but also our understanding of plasma turbulence. Long-term measurements in the solar wind 
provided the first opportunity to perform statistics across multiple solar cycles. Wind has revealed that the 
scale at which bulk motions of the plasma convert and mix into random thermal motions of the constituent 
particles depends on the magnetization of the plasma and the ability of the slow solar wind to support a 
“1/f” range. Wind has also shown that solar wind turbulence is anisotropic, consistent with critical bal-
ance theory, and has improved our understanding of the location of the so called spectral break. Given the 
importance of turbulence to the evolution of the solar wind and inaccessible astrophysical plasmas, the 
advancements made by Wind observations should not be understated.

As previously mentioned, the long-term baseline of solar wind observations makes Wind a perfect platform 
for statistical studies. As such, Wind played a pivotal role in our understanding of the importance of colli-
sional effects on the evolution of the solar wind plasma. This is surprising given that the plasma is, at best, 
weakly collisional near Earth. Wind also performed the first statistically significant, long-term study of the 
 /e s tot
T T  ratio, a parameter critical for testing numerous theories from instabilities to turbulence to spec-

tral inversion in astrophysics. Wind showed novel relationships between the relative abundance between 
protons and alpha-particles and the solar wind speed and sunspot number.

Wind has made critical contributions to our understanding of IP collisionless shock waves. Studies using 
Wind have improved our understanding of energy dissipation mechanisms, particle energization mech-
anisms, energetic particle sources, and shock evolution through remote detection. Wind studies have 
also shown that the structure of low Mach number, low plasma beta, quasi-perpendicular shocks are not 
laminar as originally theorized. In fact, the electromagnetic magnetosonic-whistler precursor waves have 
amplitudes exceeding the shock ramp amplitude, thus containing the largest magnetic field gradients in 
the shock. As previously discussed, Wind also showed that TIFP can generate their own mini-foreshock 
within the larger terrestrial ion foreshock. All of these advances have reignited interest in collisionless 
shock waves and improved our understanding of their dynamics and the importance of kinetic phenom-
ena within.
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Studies of ICMEs have made major strides in the decades since Wind’s launch. We now know that most 
IP shocks near Earth are caused by ICMEs, and have a better understanding of the magnetic structure of 
ICMEs and their space weather impacts because of Wind. Wind also made the first measurements of ex-
tremely cold (∼1 eV), collisionally mediated electrons within an ICME, something that is not possible with 
any other current space mission. Wind has also made advances in the study of CIRs/SIRs confirming that 
they are efficient at particle energization even when they do not yet exhibit a collisionless shock near Earth.

Wind made the first in situ measurements of ultra-heavy ions in SEP events with atomic numbers between 
34 and 82. Wind also discovered, through long-term statistical analysis, that the weakest solar flares are 
associated with the strongest SEP enhancements. These measurements were made by instrumentation that 
are currently unique to Wind for near Earth missions.

Remote radio measurements from Wind have also led to numerous advances in understanding solar phe-
nomena. Prior to the launch of Wind, there were virtually no observations of solar radio emissions between 
∼2–15 MHz, that is, ∼2–10 Rs from the Sun center. Wind found that the occurrence of type II bursts depends 
on the rate of the fast and wide CMEs that generate type II bursts, not on typical solar activity indices like 
the sunspot number. Type II bursts are important because they can be used to help predict SEP events and 
the arrival times of ICME shocks, both critical space weather phenomena. Wind made some of the first in 
situ measurements of the electron beams generating type III bursts and was the first to measure type VI 
bursts down to ∼7.5 MHz. No other near-Earth mission has the accuracy, sensitivity, and capabilities of 
Wind for radio measurements.

The Wind mission is perhaps best known as a solar wind monitor but it also has one of the most diverse 
arrays of instrument suites. For a majority of the mission, Wind provided the only observations of kinetic 
phenomena in the solar wind, and Wind is still the only mission to provide comprehensive, high-cadence 
plasma measurements across multiple solar cycles. Wind continues to provide continuous low-frequency 
solar radio observations, which are a critical part of space weather monitoring. In summary, the list of ac-
complishments and advances made by the Wind mission are extensive. Its contribution to multiple areas of 
research cannot be over stated and it continues to operate nominally even after 26+ years of service. With 
the launch of PSP and SolO and future missions, the importance of Wind is only expected to grow, not 
diminish. For this reason and the numerous listed and unlisted above, Wind is a very special and critical 
spacecraft.

Appendix A:  Definitions and Notation
This appendix lists the symbols/notation used throughout.

one-variable statistics

�—	� Xmin ≡ minimum
�—	� Xmax ≡ maximum
�—	�  X  mean
�—	�  X  median
�—	� X5% ≡ fifth percentile
�—	� X25% ≡ 25th percentile
�—	� X75% ≡ 75th percentile
�—	� X95% ≡ 95th percentile
�—	� σ ≡ standard deviation
�—	� σ2 ≡ variance

Fundamental parameters

�—	� ɛo ≡ permittivity of free space
�—	� μo ≡ permeability of free space
�—	� c ≡ speed of light in vacuum [km s−1]   




1/2
o o

�—	� kB ≡ the Boltzmann constant [J K−1]
�—	� e ≡ the fundamental charge [C]
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Plasma parameters

�—	� Bo ≡ quasi-static magnetic field vector [nT] with magnitude Bo

�—	� ns ≡ the number density [cm−3] of species s
�—	� ms ≡ the mass [kg] of species s
�—	� Zs ≡ the charge state of species s
�—	� qs = Zs e ≡ the charge [C] of species s
�—	� ρm = ∑smsns ≡ total mass density [kg cm−3]
�—	� γs ≡ polytropic index or ratio of specific heats [N/A] of species s
�—	� Ts,j ≡ the scalar temperature [eV] of the jth component of species s, j = ∥, ⊥, or tot where ∥(⊥) is par-

allel(perpendicular) with respect to Bo (see Equation A1a)
�—	� Ps,j = ns kB Ts,j ≡ the partial thermal pressure [eV cm−3] of the jth component of species s
�—	� Pt,j = ∑s Ps,j ≡ the total pressure [eV cm−3] of the jth component, summed over all species
�—	� VTs,j ≡ the most probable thermal speed [km s−1] of a one-dimensional velocity distribution (see 

Equation A1b)
�—	� Ωcs = 2 π fcs ≡ the angular cyclotron frequency [rad s−1] (see Equation A1c)
�—	� ωps = 2 π fps ≡ the angular plasma frequency [rad s−1] (see Equation A1d)
�—	�   Ω 2lh ce cif f  the angular lower hybrid resonance frequency [rad s−1]

�—	�    2 2Ω 2uh ce pef f  the angular upper hybrid resonance frequency [rad s−1]
�—	� λDe ≡ the electron Debye length [m] (see Equation A1e)
�—	� ρcs ≡ the thermal gyroradius [km] (see Equation A1f) of species s
�—	� λs ≡ the inertial length [km] (see Equation A1g) of species s
�—	� βs,j ≡ the plasma beta [N/A] of the jth component of species s (see Equation A1h)
�—	� VA ≡ the Alfvén speed [km s−1] (see Equation A1i)
�—	� Cs ≡ the sound or ion-acoustic sound speed [km s−1] (see Equation A1j)
�—	� Vf ≡ the fast mode speed [km s−1] (see Equation A1l)
�—	� θBn ≡ the shock normal angle, that is, the acute reference angle between  o upB  and the shock normal 

unit vector [deg]
�—	�   | |shn jU  the jth region average shock normal speed [km s−1] in the shock rest frame (i.e., the speed of 

the flow relative to the shock)
�—	�        | | /A j shn j A jM U V  the jth region average Alfvénic Mach number [N/A]
�—	�        | | /f j shn j f jM U V  the jth region average fast mode Mach number [N/A]
�—	� RE ≡ mean equatorial radius of Earth (∼6,378 km)
�—	� RL ≡ mean equatorial radius of Earth’s moon (∼1,737 km)
�—	� Rs ≡ mean solar radius (∼695,700 km)
�—	� σc ≡ normalized cross-helicity, a quantified measure of the imbalance in plasma turbulence (see Equa-

tion A1m)
�—	� z± = δv ± δb ≡ Elsasser variables [km s−1], where δv and δb are the velocity and magnetic field fluctua-

tions, the latter being normalized by o i in M  to make it akin to an Alfvénic fluctuation speed

where multiple parameters are given in the following equations:

  , , ,
1 2
3s tot s sT T T� (A1a)


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s

k T
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Appendix B:  Instability and Wave Definitions and Summary
In this appendix, we briefly summarize some of the most commonly investigated kinetic plasma instabili-
ties and waves in the IPM to provide context and reference for the reader. Although not all of these are dis-
cussed in Section 3.7.2, Wind data have been used to examine each of these instabilities in multiple different 
regions of space. Therefore, we provide the comprehensive list for reference. We use the phrase “driven 
unstable” to mean the free energy was sufficiently above the growth threshold for the electric or magnetic 
fluctuations to grow in amplitude. The instabilities and/or waves are as follows in no particular order:

•	 �Firehose Instability: The firehose mode can be driven unstable by temperature anisotropies (i.e., 
Ts,⊥ < Ts,∥) in both electrons (Gary & Nishimura, 2003) and ions (Bale et al., 2009; Gary et al., 1976; Hell-
inger et al., 2006; Maruca et al., 2012). These are not typically observed with in situ time series data but 
more so inferred by statistical trends limiting Ts,⊥/Ts,∥.

�—	�Electron Firehose Instability: The electron firehose mode can be both resonant and nonresonant 
with the electrons (Gary & Nishimura, 2003). It either propagates along Bo and is left-hand polarized 
(with respect to Bo), or it is nonpropagating (i.e., the real part of its frequency is zero) with k oblique 
to Bo and nearly linearly polarized.

�—	�Ion Firehose Instability: The ion firehose mode can be both resonant and nonresonant with the 
ions but can only experience a nonresonant, cyclotron-like interaction with the electrons (Gary 
et al., 1998). The mode is right-hand polarized (with respect to Bo) and the wave vector is oriented 
nearly along Bo in the linear regime but can become oblique when nonlinear.
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•	 �Mirror Modes: The mirror mode can be driven unstable by temperature anisotropies (i.e., Ts,⊥ > Ts,∥) 
in both electrons (Gary & Karimabadi, 2006) and ions (Chen et al., 2016; Gary et al., 1976; Hellinger 
et al., 2006). In the linear stage mirror modes are purely growing modes, that is, the real part of their 
frequency is zero so they do not propagate. They also show an anti-correlation between δB and δB. In the 
nonlinear regime, the mirror mode can propagate and k can be obliquely oriented with respect to Bo. In 
linear kinetic theory, mirror modes are always oblique and only in fluid theories is k exactly orthogonal 
to Bo. In time series they are usually seen as local decreases in the magnitude of Bo and less commonly 
as enhancements.

�—	� Electron Mirror Mode: The electron mirror mode is a nonpropagating mode with wave vector 
oriented obliquely to Bo and has k c/ωpe < 1.

�—	� Ion Mirror Mode: The ion mirror mode is a nonpropagating mode with wave vector oriented 
obliquely to Bo and has k ρcp < 1.

•	 �ICWs: Electromagnetic ion cyclotron waves (EMIC), ion cyclotron waves (ICWs), proton cyclotron 
waves (PCWs), or Alfvén/ion cyclotron (AIC) waves are linear or left-hand polarized (with respect to 
Bo) modes that propagate small angles to Bo. They have rest frame frequencies below the local fcp in 
the solar wind and typically satisfy k c/ωpp ∼ 0.2–0.6 (He, Wang, et al., 2015; He, Pei, et al., 2015; Wicks 
et al., 2016). They can be driven unstable by temperature anisotropies (Gary et al., 1976) or ion beams 
(Gary et al., 1981; Wicks et al., 2016). These waves can reach amplitudes in excess of > 10 mV/m and > 
2 nT in the solar wind.

•	 �LHWs: Electrostatic (or electromagnetic) lower hybrid waves (or lower hybrid drift or lower hybrid 
drift instability) are typically linearly polarized electrostatic (i.e., k × Bo = 0) waves propagating perpen-
dicular to Bo. When obliquely propagating, they become a right-hand circularly polarized electromag-
netic mode and lie on the same branch of the dispersion relation as fast/magnetosonic-whistler mode 
waves (Davidson & Gladd, 1975; Huba & Wu, 1976; Lemons & Gary, 1978; Marsch & Chang, 1983; Wu 
et al., 1983, 1984). The typical free energy sources include but are not limited to electric currents (Lem-
ons & Gary, 1978), gradient drifts (Davidson & Gladd, 1975; Huba & Wu, 1976; Lemons & Gary, 1978), 
the modified two-stream instability (Wu et al., 1983, 1984), and/or heat flux carrying electrons (Marsch 
& Chang, 1983). In time series in situ data these waves look like modulated sine waves in the perpen-
dicular electric field for the electrostatic version and much less well defined electric and magnetic 
fluctuations when electromagnetic (Walker et al., 2008; Wilson III, Koval, Szabo, et al., 2013). The elec-
trostatic fluctuations tend to remain below the local lower hybrid resonance frequency, lh ce cif f f

, while the electromagnetic fluctuations can extend to well above flh (Walker et al., 2008; Wilson III, 

Koval, Szabo, et al., 2013). These waves can reach amplitudes in excess of >30 mV/m and >20 nT in 
space plasmas.

•	 �Magnetosonic-whistler Waves: These are the electromagnetic version of electrostatic LHWs dis-
cussed above and are sometimes called electromagnetic lower hybrid waves, whistler precursors, “1 Hz 
waves” and/or ULF waves in the terrestrial foreshock. They are part of the MHD fast mode branch of 
the dispersion relation. They are right-hand polarized (with respect to Bo), obliquely propagating modes 
with wave normal angles satisfying 10° ≲ θkB ≲ 60°, wavenumbers satisfying 0.02 ≲ k ρce ≲ 3.0, space-
craft frame frequencies near 1 AU satisfying 0.01 Hz ≲ fsc ≲ 7.0 Hz, and rest frame frequencies near 1 
AU satisfying 0.01 rest

cp

f
f

  38 (Wilson, Koval, Szabo, et al., 2013; Wilson, 2016; Wilson et al., 2017). 

The instabilities responsible for radiating these modes can be driven unstable by shock-reflected ions 
(Wilson et al., 2012; Wu et al., 1983) and/or heat heat flux carrying electrons (Marsch & Chang, 1983; 
Verscharen, Chandran, et al., 2019). These modes can also be directly radiated through a process called 
dispersive radiation (Krasnoselskikh et al., 2002; Tidman & Northrop, 1968; Wilson et al., 2009, 2017), 
whereby the temporally and spatially varying magnetic fields and currents in the nonlinearly steepening 
collisionless shock ramp radiate electromagnetic fluctuations on the fast/magnetosonic-whistler branch 
of the dispersion relation. They are observed with in situ time series data as modulated sine waves at 
low amplitudes and can exhibit soliton-like pulsations at large amplitudes (Wilson et al., 2012; Wilson, 
Koval, Szabo, et al., 2013; Wilson, Koval, Sibeck, et al., 2013; Wilson et al., 2017). These waves can reach 
amplitudes in excess of > 30 mV/m and >20 nT in space plasmas.
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•	 �Whistler Waves: Electromagnetic whistler mode waves (or whistler waves or whistlers or lion roars 
or chorus or hiss) are right-hand polarized with respect to Bo and dispersive (i.e., phase speed depends 
upon the wavenumber) (Hull et al., 2012; Santolík et al., 2003, 2014). They are radiated by instabil-
ities driven unstable by the temperature anisotropy of hot electrons or heat flux carrying electrons 
(Tong et al., 2019; Vasko et al., 2019; Verscharen, Chandran, et al., 2019; Wilson et al., 2009, 2020a; 
Wilson, Koval, Szabo, et al., 2013). They tend to have rest frame frequencies satisfying ωlh ≪ ω < ωce 
and wavenumbers satisfying k c/ωpe ∼ 0.2–1.0 or k ρce ∼ 0.2–0.8 (Stansby et al., 2016; Wilson III, Koval, 
Szabo, et al., 2013). These waves can reach amplitudes in excess of > 300 mV/m and >8 nT in space 
plasmas.

•	 �ESWs: Electrostatic solitary waves (or BGK phase space holes or electron/ion holes or solitary waves) 
are linearly polarized electrostatic structures that exhibit a bipolar(unipolar) electric field pulse parallel 
(perpendicular) to Bo with λ ≳ 2 π λDe (Bale, Kellogg, Larson, et al., 1998; Breneman et al., 2013; Cattell 
et al., 2003, 2005; Franz et al., 2005; Malaspina et al., 2013; Vasko et al., 2018; Wilson et al., 2007, 2010). 
They can propagate along the quasi-static magnetic field at fractions of VTe (Cattell et al., 2005; Franz 
et al., 2005) or obliquely to the field and at much lower speeds (Vasko et al., 2018). These waves can reach 
amplitudes in excess of >1,000 mV/m in space plasmas.

•	 �IAWs: Electrostatic ion acoustic waves (or ion sound waves) are linearly polarized (parallel to Bo) elec-
trostatic (i.e., k ×Bo  =  0) waves with λ ≳  2 π λDe (Breneman et  al.,  2013; Fuselier & Gurnett,  1984; 
Gurnett, Neubauer, & Schwenn, 1979; Gurnett, Marsch, et al., 1979; Wilson et al., 2007, 2010). The time 
series present as symmetric (about zero) electric field oscillations in the form of modulated sine waves 
with spacecraft frame frequencies near 1 AU satisfying few 100 Hz ≲ fsc ≲ 10 kHz. Near collisionless 
shock waves in space plasmas, these waves can reach amplitudes in excess of > 300 mV/m.

•	 �ECDI: The electron cyclotron drift instability (Forslund et al., 1970, 1972) or beam cyclotron instability 
(Lampe, Manheimer, et al., 1971; Lampe, McBride, et al., 1971) or electrostatic electron-ion streaming 
instability (Wong, 1970) occurs upstream of collisionless shocks due to the relative drift between inci-
dent electrons and shock-reflected ions (Forslund et al., 1970; Muschietti & Lembège, 2013, 2017). They 
are observed as electrostatic fluctuations with mixtures of IAW and electron cyclotron harmonics. That 
is, the power spectrum shows a broad acoustic spectrum expected for IAWs and superposed are integer 
and/or half-integer harmonics of fce. The polarizations shown in hodogram plots can look like “tadpoles” 
or “tear drops.” The time series present as asymmetric (about zero) electric field oscillations in both the 
parallel and perpendicular (with respect to Bo) components (Breneman et al., 2013; Wilson et al., 2010). 
These waves can reach amplitudes in excess of >300 mV/m in space plasmas.

•	 �Langmuir Waves: Langmuir waves can be both linearly (electrostatic) and elliptically (electro-
magnetic) polarized and are driven unstable by electron beams (e.g., “bump-on-tail” instability). 
The time series signature is a modulated sine wave with spacecraft frame frequencies near fpe (Bale 
et al., 1996, 1997; Bale, Kellogg, Goetz, & Monson, 1998; Kellogg, Monson, et al., 1996; Malaspina & 
Ergun, 2008; Malaspina et al., 2011). In space plasmas, they are often large amplitude with some in 
excess of >500 mV/m.
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Year Title Citation & URL

2020 Wind WAVES TDSF Dataset Wilson (2020)

https://doi.org/10.5281/zenodo.3911205

2020 Supplement to: Electron energy partition across interplanetary Wilson et al. (2020b)

Shocks: III. Analysis https://doi.org/10.5281/zenodo.3627284

2020 Radial Evolution of Coronal Mass Ejections Between MESSENGER, & Salman et al. (2020)

Venus Express, STEREO, and L1: Catalog and Analysis https://doi.org/10.1029/2019JA027084

2019 Supplement to: Electron energy partition across interplanetary Wilson et al. (2019c)

shocks https://doi.org/10.5281/zenodo.2875806

Table C1 
A Selection of Wind Databases First Published Between 2013 and 2020
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Appendix C:  Wind Databases
This appendix provides a single reference table listing the databases relying upon Wind databases created 
between 2013 to 2020. The limited scope of Table C1 is partly for brevity’s sake and partly due to the difficul-
ty in documenting/referencing older databases (e.g., nonfunctional URLs and/or a lack of a working DOI).

Glossary
AE-Index  An index designed to provide a global, quantitative measure of auroral zone magnetic activity 

produced by enhanced ionospheric currents.
Alpha-particle  A doubly charged ion that is the nucleus of a 4He atom.
Astronomical Unit  Roughly the distance between the Earth and sun called 1 AU. Originally it was defined 

as the average distance between the two bodies but was defined as exactly 149,597,870,700 m 
(or ∼149.6 million kilometers or ∼92.96 million miles) in 2012.

Bow Shock  Shock wave standing upstream of a obstacle/piston in an incident, supersonic flow. In a plas-
ma, this only occurs upstream of magnetized planetary bodies.

Carrington rotation  An approximate time scale over which the photosphere (i.e., optical surface of 
the Sun) at low latitudes rotates through 2π radians. Richard C. Carrington determined this 
rate watching sun spots in the 1850s and arrived at a sidereal rotation period of ∼23.38 days 
(1 day = 86,400 s). Since sidereal rotation is relative to fixed stars and Earth orbits the sun, a 
Carrington rotation observed from Earth is ∼27.2753 days.
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Table C1 
Continued

Year Title Citation & URL

2019 A Catalog of Type II radio bursts observed by Wind/WAVES Gopalswamy, Mäkelä, and Yashiro (2019)

and their Statistical Properties https://cdaw.gsfc.nasa.gov/CME_list/radio/
waves_type2.html

2018 A database of small-scale magnetic flux ropes in the solar wind Hu et al. (2018)

from Wind spacecraft measurements https://doi.org/10.1088/1742–6596/1100/1/012012

2018 Wind ICME Catalog Nieves-Chinchilla et al. (2018)

https://wind.nasa.gov/ICMEindex.php

2018 The Wind/EPACT Proton Event Catalog Miteva et al. (2018)

http://www.stil.bas.bg/SEPcatalog/

2017 The KONUS-Wind GRB Catalog with known Redshifts Tsvetkova et al. (2017)

http://www.ioffe.ru/LEA/zGRBs/triggered/

2017 Interactive Multi-instrument Database of Solar Flares Sadykov et al. (2017)

https://solarflare.njit.edu

2016 The 2nd KONUS-Wind Catalog of sGRBs Svinkin et al. (2016)

http://www.ioffe.ru/LEA/shortGRBs/Catalog/

2016 Wind Dust Impact Database Malaspina and Wilson (2016)

https://cdaweb.gsfc.nasa.gov/index.html/

2014 Catalog of High-Speed Solar Wind Streams during Solar Cycle 23 Xystouris et al. (2014)

https://doi.org/10.1007/s11207-013-0355-z

2014 KONUS-Wind Solar Flares Pal’shin et al. (2014)

http://www.ioffe.ru/LEA/Solar/

2013 Interplanetary Network Localizations of sGRBs Pal’shin et al. (2013)

https://doi.org/10.1088/0067-0049/207/2/38
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Collisionless Shock  A shock wave where the ramp region, or region of sharpest parameter gradients, 
spatial scale is orders of magnitude smaller than the mean free Coulomb collisional path. 
Anecdotally, the mean free path of a thermal proton near Earth is roughly 1 AU while the 
typical shock ramp thickness only several kilometers to a few tens of kilometers.

Coronal Hole  Regions in which the magnetic field lines do not connect back to the solar surface but 
rather are directed outward into the IPM.

Coronal Mass Ejection  Eruptions of plasma from the solar corona that are some of the largest (ener-
getically) phenomena in the solar system. When moving out though the IPM, they are called 
interplanetary coronal mass ejections or ICMEs.

Corotating Interaction Region  The compressed plasma region that corotates with the Sun formed 
along the leading edge of a fast solar wind stream from a coronal hole as it interacts with 
preceding slower solar wind. Some reseachers require that the CIR is observed at least twice 
to distinguish it from a “stream interaction region” (SIR). Shock waves can develop along the 
CIR boundaries, usually beyond 1 AU, mostly due to the expansion speed of the CIR relative 
to the ambient plasma. This becomes more favorable at larger heliocentric distances.

Cyclotron Frequency  The rate at which a charged particle orbits a magnetic field. It is also called the 
gyrofrequency.

Cyclotron Resonance  Condition where an electric field oscillates at the same rate as the particle gyrof-
requency in the particle guiding center rest frame resulting in energy gain/loss, depending 
upon whether the oscillations are damping/growing.

Critical Balance  A conjecture of turbulence models in which the linear and nonlinear timescales of the 
system remain comparable at all scales in the inertial range.

Debye Length  The maximum distance any single charged particle’s electric field can influence other 
charged particles in a plasma. This is often referred to in terms of the electrostatic screening 
or shielding because for scales larger than the Debye length, only wave and convective elec-
tric fields tend to persist.

Dispersion Relation  The function that defines the relationship between the frequency and wavenum-
ber, that is,    k .

Dispersive Radiation  The process through which an electromagnetic emission is generated due to tem-
porally and spatially varying currents with the fluctuation frequencies having an explicit de-
pendence upon the wavenumber. These phenomena typically occur in the magnetic ramp 
of collisionless shocks, which are nonlinearly steepened fast/magnetosonic-whistler waves. 
Thus, the radiated waves are on the fast/magnetosonic-whistler branch of the dispersion 
relation.

Dispersive Wave  Any fluctuation that has an explicit wavenumber dependence in its frequency, that is, 
   k .

Disruption Scale	  The spatial scale at which the reconnection timescale becomes faster than the turbu-
lent eddy timescale resulting in a reconnection dominated Cascade Range.

Dissipation Range  The range of scales in a turbulent medium where dissipation dominates over the 
energy cascade, usually at the smallest scales. Note that this term has become less relevant 
and been replaced by just kinetic range.

Dust  Dust here refers to particles ranging in size from nanometers to several micrometers (microns) orig-
inating either with the interplanetary medium (IPD) or from the interstellar medium (ISD).

Dst Index  The Disturbance Storm-Time (Dst) index is a measure of space weather, specifically meas-
uring the strength of the ring current of ions around the Earth’s equatorial region in the 
magnetosphere.

Eddy Turnover Time  Approximate time scale necessary for a fluid vortex, or eddy, to rotate about its 
axis of symmetry.

Energetic Storm Particles  An enhancement in the energetic particle intensity, typically at energies of 
tens of keV to ∼10 MeV, in the vicinity of an interplanetary shock, usually attributed to local 
particle acceleration by the shock.

Eulerian Decorrelation Time  Timescale over which turbulent fluctuations remain correlated in the 
Eulerian frame of reference.
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Fast Radio Burst	  These are bright, millisecond-scale radio flashes of currently unconfirmed origin. 
Some recent observations suggest that magnetars may be the most likely source candidates. 
They are likely associated with or caused by some cataclysmic astrophysical event as the esti-
mated power associated with them can exceed 1035 J s−1 or 1042 erg s−1, that is, the total solar 
output for ∼3 days.

Foreshock  Region upstream of a shock wave in communication with the shock wave through electro-
magnetic waves and/or backstreaming particles.

Gamma Rays  These are photons with energies >100 keV. There is no distinct cutoff between gamma rays 
and x-rays, but they are typically distinguished by their source. X-rays tend to be emitted by 
accelerating electrons and gamma rays from nuclear processes.

Gamma Ray Burst  The brightest electromagnetic events known to occur in the universe, occurring tran-
siently from the collapse of massive stars or coalescence of compact objects (e.g., two neutron 
stars or a neutron star-black hole merger). They consist of an initial flash of gamma-rays last-
ing from tens of milliseconds to minutes followed by a longer duration “afterglow” at radio 
and optical wavelengths.

Giant Flare  These are of greater apparent intensity than gamma ray bursts and are very rare, averaging 
once per decade.

Ground Level Enhancement  Solar particle events that extend to sufficiently high (∼GeV) energies that 
they produce secondary particles in the atmosphere that are detected by ground-based neu-
tron monitors.

Gyrophase  The angular description of a particle’s gyro orbit about the magnetic field.
Gyroradius  The orbital distance of a charged particle’s motion about a magnetic field. It is also called the 

Larmor radius.
Halo Orbit  A periodic trajectory around a gravitational Lagrange point that consists of a subset of Lissa-

jous orbits where all three components share the same periodicity.
Heliosphere  Region of space dominated by the sun’s solar wind bounded by its interaction with the 

interstellar medium.
Heliospheric Current Sheet  The surface that separates the two solar magnetic polarities or hemi-

spheres of the heliosphere.
Inertial Length  The distance covered by the speed of light in vacuum during one plasma oscillation. 

This is also called the skin depth.
Inertial Range  The range of scales in a turbulent medium in which the inertial forces dominate resulting 

in the proposed cascade of energy from larger to smaller scales.
Interplanetary Coronal Mass Ejection  A structure in the solar wind observed remotely or in situ 

formed of material associated with a coronal mass ejection.
Interplanetary Magnetic Field  The magnetic field permeating the IPM.
Interplanetary Shock  Shock wave propagating in the IPM are generated by either corotating/stream 

interaction regions or interplanetary coronal mass ejections.
Kinetic Instability  Similar to plasma instability defined below, it is a mechanism through which a plas-

ma converts some free energy source into electromagnetic fluctuations. The difference be-
tween kinetic and plasma instabilities is that the former specifically refers to features in the 
VDFs while the latter also encompasses fluid-like instabilities.

Kinetic Range  The range of scales in a turbulent plasma comparable to or smaller than the plasma ki-
netic scales, for example, particle gyroradii, inertial lengths, etc.

Lagrange Point  Region of space with a local minimum in the gravitational potential caused between at 
least two large masses (e.g., Earth and sun).

Landau Resonance  Condition where a longitudinal electric field oscillates along the same direction as 
a particle’s velocity at such a rate as to allow the particle to gain/lose energy by effectively 
“surfing” on the electric potential gradients of the oscillating field. The gain/loss depends 
upon whether the oscillations are damping/growing much like cyclotron resonance.

Lissajous Orbit	 A quasi-periodic trajectory around a gravitational Lagrange point. Often, two of the 
three spatial coordinates of the orbit are stable and coupled to each other while the third is 
periodically independent.
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Magnetar  These are rare, young, and isolated neutron stars with extremely strong magnetic fields that 
can reach up to 1011 T or 1015 G. These have been confirmed to be the source of SGRs and are 
a possible candidate source for fast radio bursts.

Magnetic Cloud	   A structure in an interplanetary coronal mass ejection characterized by an enhanced 
magnetic field that rotates through a large angle, usually interpreted as evidence for a mag-
netic flux rope, and low plasma beta.

Magnetic Island	   Region of space wherein all magnetic field lines are closed either in two- or 
three-dimensions.

Magnetic Reconnection  The process of of a change in the topology of a magnetic field through the de-
struction of magnetic flux and subsequent conversion to particle kinetic energy.

Magnetohydrodynamics	   The approximation that the plasma can be represented as a single species 
fluid model which is scale-invariant. It is often abbreviated as MHD.

Magnetosheath	   Region between the bow shock and magnetosphere where plasma flow is decelerated 
and deflected around the magnetosphere of the planetary body.

Magnetosphere	   Region of space surrounding a magnetized planetary body separated/protected from 
the incident solar wind by the body’s magnetic field.

Magnetotail	   Region of magnetosphere on opposite side of solar wind incident flow, where the field has 
been stretched due to the asymmetric pressure (i.e., ram pressure) exerted on the planetary 
body’s magnetic field combined with dayside reconnecting field lines being dragged into the 
nightside region.

Normal Mode  The natural or preferred frequency and wavelength of fluctuations/oscillations of a 
medium/system.

Phase Space	   The region in which all possible states of a system can be expressed. In plasma physics 
and/or kinetic theory, this is usually limited to position and momentum coordinates.

Plasma  An ionized gas that exhibits a collective behavior similar to a fluid and is governed by long-range 
interactions/forces.

Plasma Frequency  The fastest rate at which a collection of charged particles can oscillate in the absence 
of an external driving force. The oscillation is typically considered in the absence of a mag-
netic field because the frequency only depends upon the charged species density and charge 
state.

Plasma Instability  The mechanism through which a plasma converts some free energy source into elec-
tromagnetic fluctuations.

Quasi-perpendicular(parallel) Shock  Denoting collisionless shock waves with shock normal angles 
often considered to be ≥ 45°(<45°).

Radiation Belts  A region of space surrounding magnetized planetary bodies that contains particles that 
are much more energetic than in the surrounding medium. The particles are trapped and 
perform three types of orbital motions: gyration about the magnetic field, bouncing between 
the two magnetic poles, and drifting around the magnetized planetary body. At Earth, these 
regions are sometimes called the Van Allen radiation belts or Van Allen belts after their dis-
coverer James Van Allen.

Ring Current  An electric current carried by particles on trapped, longitudinal orbits about the Earth 
near the geomagnetic equator at altitudes of ∼3–8 RE. The particles involved are primarily 
ions (mostly protons and singly ionized oxygen) with energies ∼10–200 keV.

Shock Normal Angle  The angle between the upstream magnetic field vector and the outward shock 
normal unit vector.

Shock Wave	   A stable discontinuity arising from a nonlinearly steepened compressional wave that has 
reached a balance between steepening and energy dissipation.

Solar Energetic Particles	   Temporary enhancements of suprathermal (≳10 keV) to relativistic (∼few 
GeV) particles following energetic solar events (e.g., flares and coronal mass ejections) that 
last from hours to several days and include protons, electrons and heavy ions.

Soft Gamma Repeater  These are strongly magnetized Galactic neutron stars that emit large bursts of 
X-rays and gamma-rays at irregular intervals.

Solar Exclusion Zone  Region of sky about solar disk where solar radio emissions cause sufficient inter-
ference with spacecraft communications to prevent telemetry signal locks.
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Solar Flare  An abrupt and intense enhancement in ultraviolet to gamma ray electromagnetic radiation 
from a localized region on the sun. On rare occasions for strong flares, the enhanced, local-
ized emission can occur in the visible frequency range too.

Solar Wind  A stream of plasma propagating away from the Sun. It is primarily comprised of electrons, 
protons, and alpha-particles (and heavier ions), is not in thermal or thermodynamic equilib-
rium, and flows supersonically.

Stream Interaction Region  A corotating interaction region (CIR) that need not be observed on two 
solar rotations. Also used interchangably with CIR.

Structure Function  A statistical measure to describe the typical fluctuation amplitudes as a function of 
scale in a turbulent medium; a conditioned structure function is a structure function con-
structed from a selected subset of the turbulent fluctuations.

Suprathermal  Particles with kinetic energies above the thermal energy of the medium.
Sustained Gamma Ray Emission	 A continuum at gamma ray frequencies caused by pion-decay due to 

interaction with >300 MeV protons.
Taylor’s Hypothesis  The assumption that any variation in a moving flow is propagating at a speed much 

slower than the bulk flow of the fluid, thus allowing one to convert time series data into 
spatial scales.

Taylor Microscale  A fundamental scale in a turbulent medium characterizing the spatial size of fluctu-
ation gradients.

Thermal Equilibrium  Condition where the particle constituents of a medium are in equipartition of 
energy (i.e., all have the same temperature) but there can be finite heat fluxes present.

Thermodynamic Equilibrium  Condition where the particle constituents of a medium are in equipar-
tition of energy (i.e., all have the same temperature) and there are no heat fluxes present.

Transient Ion Foreshock Phenomena  These are large-scale (∼1,000 to > 30,000 km), solitary [∼5–10 
per day and transient] structures with durations of tens of seconds to several minutes. They 
are driven by instabilities caused by the backstreaming particles forming the foreshock.

Trans-iron Elements  These are elements on the periodic table at higher proton number than iron, that 
is, more than 26 protons.

Turbulence	   A process in fluids or plasmas characterized by chaotic broadband fluctuations which 
is modeled by a cascade of energy, usually from large injection scales to small dissipation 
scales.

Type II Burst	  A class of solar radio emissions caused by nonthermal electrons accelerated by CME-driv-
en shock waves. They are characterized by their slow frequency drift (i.e., few 100s of kHz 
per hour) versus time, which is a tracer of the shock speed and the electron number density 
upstream of the shock.

Type III Burst  A class of solar radio emissions caused by nonthermal electrons accelerated during a solar 
eruption streaming out along the IMF. They are characterized by their fast frequency drift 
(i.e., MHz per minute) versus time, which is a tracer of the gradient in the interplanetary 
electron number density.

Type III Storm  A class of solar radio emissions caused by nonthermal electrons streaming along local 
magnetic fields in active regions, but outside of flare or CME eruption sites. They are charac-
terized by broadband (>few MHz), very short duration (i.e., ≲1–2 min) emissions that occur 
in rapid succession (typically > 10 per hour).

Type IV Burst  A class of solar radio emissions caused by nonthermal electrons trapped in the post-erup-
tion arcades (i.e., half-loop-like arches of intense magnetic field connecting to active regions 
on the solar surface) in/around a solar flare or CME eruption site. They are characterized 
by a broadband frequency emission in the several to >10 MHz range, sometimes showing a 
U-shaped frequency-time profile.

Velocity Distribution Function  A function that defines the probability density of particles in phase 
space. An example is the Maxwell-Boltzmann velocity distribution function.

X-line  The region within a magnetic reconnection site of an intense current sheet where magnetic flux is 
being destroyed, changing the field topology.

X-rays  Photons with energies in the range ∼124 eV to ∼124 keV. These are split into hard and soft ranges, 
with hard being photons with energies ≳5–10 keV.
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Acronyms
ACE	 Advanced Composition Explorer
ADS	 Astrophysics Data System
AE–Index	 Auroral Electrojet Index
AIM	 Aeronomy of Ice in the Mesosphere
APE	 Alpha-Proton-Electron telescope, part of Wind EPACT/ELITE
ARTEMIS	 Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction 

with the Sun
AU	 Astronomical Unit
CAP	 Command and Attitude Processor
CDAWeb	 Coordinated Data Analysis Web
CIR	 Corotating Interaction Region
CME	 Coronal Mass Ejection
DH	 Decametric-hectometer
DSCOVR	 |Deep Space Climate Observatory
DTR	 Digital Tape Recorder
EESA	 Electron Electrostatic Analyzer, part of Wind3DP
ECDI	 Electron Cyclotron Drift Instability
ELITE	 Electron-Isotope Telescope system, part of WindEPACT
EPACT	 Energetic Particles: Acceleration, Composition, and Transport, the APE-ELITE-IT-LEMT-

STEP instrument suite on Wind known as EPACT
ESA	 ElectroStatic Analyzer	 European Space Agency
ESA	 ElectroStatic Analyzer	 European Space Agency
ESP	 Energetic Storm Particle
ESW	 Electrostatic Solitary Wave
eV	 electron volt
FC	 Faraday Cup, e.g., Wind/SWE
FOT	 Flight Operations Team
FRB	 Fast Radio Burst
GCN	 Gamma-ray Coordinates Network
GeV	 Giga-electron volt
GF	 SGR Giant Flare
GGS	 Global Geospace Science
GLE	 Ground Level Enhancement
GRB	 Gamma Ray Burst
GSE	 Geocentric Solar Ecliptic
GSFC	 Goddard Space Flight Center
HCS	 Heliospheric Current Sheet
HK	 House Keeping, i.e., type of engineering data for spacecraft and instruments
HSO	 Heliophysics System Observatory
IAW	 electrostatic Ion Acoustic Wave
ICME	 Interplanetary Coronal Mass Ejection
ICW	 Ion Cyclotron Wave
IMAP	 Interstellar MApping Probe
IMF	 Interplanetary Magnetic Field
INTEGRAL	 INTErnational Gamma-Ray Astrophysics Laboratory
IP	 Interplanetary
IPD	 Interplanetary Dust
IPM	 Interplanetary Medium
IPN	 Interplanetary GRB Network
ISD	 Interstellar Dust
ISTP	 International Solar-Terrestrial Physics
IT	 Isotope Telescope, part of Wind EPACT/ELITE
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keV	 kilo-electron volt
KONUS	 Gamma-Ray Spectrometer, i.e., the Wind KONUS instrument
LEMT	 Low Energy Matrix Telescopes, part of Wind EPACT
LHW	 Lower Hybrid Wave
LIGO	 Laser Interferometer Gravitational-Wave Observatory
MASS	 high-resolution MASS spectrometer, part of Wind SMS
MeV	 Mega-electron volt
MFI	 Magnetic Field Investigation, Wind MFI
NASA	 National Aeronautics and Space Administration
PESA	 Ion (Proton) ESA, part of Wind 3DP
PSP	 Parker Solar Probe
SEP	 Solar Energetic Particle
SGR	 Soft Gamma Repeater
SGRE	 Sustained Gamma–ray Emission
SIR	 Stream Interaction Region
SMS	 Solar Wind and Suprathermal Ion Composition Experiment, i.e., the SWICS–MASS–STICS 

instrument suite on Wind known as SMS
SOFIE	 Solar Occultation For Ice Experiment
SoHO	 Solar and Heliospheric Observatory mission
SolO	 Solar Orbiter mission
SPDF	 Space Physics Data Facility
sps	 samples per second
SSN	 Sunspot number
SST	 Solid–State (semi–conductor detector) Telescope
STEP	 SupraThermal Energetic Particle Telescope, part of Wind EPACT
STICS	 SupraThermal Ion Composition Spectrometer, part of Wind SMS
Strahl (detector)	electron strahl sensor in Wind SWE instrument suite
SWE	 Solar Wind Experiment, i.e., the VEIS–Strahl–FC instrument suite on Wind known as SWE
SWICS	 Solar Wind Ion Composition Spectrometer, part of Wind SMS
STEREO	 Solar Terrestrial Relations Observatory
THEMIS	 Time History of Events and Macroscale Interactions during Substorms
TDS	 Time Domain Sampler, part of Wind WAVES
TGRS	 Transient Gamma–Ray Spectrometer, i.e., the Wind TGRS experiment
TIFP	 Transient Ion Foreshock Phenomena
TNR	 Thermal Noise Receiver, part of Wind WAVES
TUA	 Tape Unit A
TUB	 Tape Unit B
VDF	 Velocity Distribution Function
VEIS	 Vector Ion–Electron Spectrometers, part of Wind SWE

Data Availability Statement
The Wind shock database can be found at: https://www.cfa.harvard.edu/shocks/wi_data/ Analysis soft-
ware for Wind data (Wilson, 2021) can be found at: https://github.com/lynnbwilsoniii/wind_3dp_pros, and 
open-sourced calibration software (Wilson et  al.,  2021) at: https://github.com/lynnbwilsoniii/Wind_De-
com_Code Nearly all Wind data are publicly available at: https://cdaweb.gsfc.nasa.gov If not directly availa-
ble through SPDF/CDAWeb, then data can be accessed indirectly from the Wind webpage at: https://wind.
nasa.gov
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