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ABSTRACT

We investigate the conditions under which parallel-propagating Alfvén/ion–cyclotron (A/IC) waves and
fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy
of alpha particles in the solar wind. We focus on the limit in which w‖α � 0.25vA, where w‖α is the parallel
alpha-particle thermal speed and vA is the Alfvén speed. We derive analytic expressions for the instability
thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends
upon w‖α/vA, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We
validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with
previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at
significantly lower values of the alpha-particle beam speed Uα than in the isotropic-temperature case. Likewise,
differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to
the case in which Uα = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.
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1. INTRODUCTION

The solar wind is a magnetized plasma outflow originating
from the solar corona and filling interplanetary space. It consists
of protons, electrons, alpha particles, and minor ions. The alpha
particles comprise ∼15% of the mass density of the fast solar
wind (Bame et al. 1977). The Coulomb collision timescale
for ions in the fast wind is typically much larger than the
wind’s approximate travel time from the Sun r/U , where r
is heliocentric distance and U is the proton outflow speed
(Kasper et al. 2008). Because collisions are weak, the expansion
and heating of the solar wind cause the plasma to develop
non-Maxwellian features, including temperature anisotropies
and ion beams (Marsch et al. 1982b; Goldstein et al. 2000;
Reisenfeld et al. 2001). Such non-Maxwellian features provide
a source of free energy that can drive plasma instabilities whose
growth timescales are much shorter than r/U (Hasegawa 1972;
Montgomery et al. 1976; Gomberoff & Elgueta 1991; Daughton
& Gary 1998; Podesta & Gary 2011). If the plasma evolves
beyond the threshold of such an instability, the instability grows
and the resulting electromagnetic fluctuations can interact with
particles to reduce the source of free energy that drives the
instability (Kaghashvili et al. 2004; Lu et al. 2009). For example,
it has been argued that instabilities in the solar wind limit the
degree of proton and alpha-particle temperature anisotropies
(Kasper et al. 2002; Hellinger et al. 2006; Matteini et al. 2007;
Bale et al. 2009; Maruca et al. 2012) and the speeds of proton and
alpha-particle beams (Gary et al. 2000b; Hellinger & Trávnı́ček
2011).

The thresholds of the instabilities that are driven by
alpha-particle beams depend on the value of w‖α/vA, where
w‖α is the parallel thermal speed of the alpha particles,

vA = B0√
4πnpmp

(1)

1 Also at Department of Physics, University of New Hampshire, Durham, NH
03824, USA.

is the proton Alfvén speed, B0 is the background magnetic
field, and np and mp are the proton number density and mass.
We first summarize some previous results pertaining to the
isotropic-temperature case, in which T⊥α = T‖α and T⊥p = T‖p,
where T⊥α (T‖α) and T⊥p (T‖p) are the perpendicular (parallel)
alpha-particle and proton temperatures, respectively. When
w‖α � vA, parallel-propagating Alfvén/ion–cyclotron (A/IC)
waves are stable. We use the phrase “parallel-propagating” to
describe waves with k × B0 = 0, where k is the wavevector.
On the other hand, oblique A/IC waves (with k × B0 �= 0)
become unstable when Uα � vA, where Uα is the average
alpha-particle velocity as measured in the proton frame (Gary
et al. 2000b; Verscharen & Chandran 2013). In the opposite
limit—i.e., w‖α � vA—the parallel-propagating A/IC wave
becomes unstable when Uα � vA (Verscharen et al. 2013).
The parallel-propagating fast-magnetosonic/whistler (FM/W)
wave is unstable when Uα � 1.5vA provided w‖α � 0.3vA, but
at smaller w‖α/vA it becomes increasingly difficult to excite this
instability (Gary et al. 2000b; Verscharen & Chandran 2013).
The dependence of the FM/W instability threshold on w‖α/vA,
however, has not been described quantitatively in previous work,
to the best of our knowledge.

The above results apply in the case of isotropic temperatures,
but in general T⊥α �= T‖α and T⊥p �= T‖p in the solar wind
(Marsch et al. 1982a, 1982b). Previous work has shown that
temperature anisotropy can significantly reduce the Uα threshold
of both the A/IC and FM/W instabilities when w‖α � vA
(Araneda et al. 2002; Gary et al. 2003; Hellinger et al. 2003).
In principle, the growth or damping rates of A/IC and FM/W
waves depend upon other plasma parameters as well.

In this work, we derive analytic expressions for the instability
thresholds of parallel-propagating A/IC and FM/W waves
that show how these thresholds depend upon w‖α/vA, Uα/vA,
T⊥α/T‖α , T‖α/T‖p, and nα/np, where nα is the alpha-particle
number density. For simplicity, we keep T⊥p = T‖p throughout
our analysis. We also focus on the limit in which w‖α � 0.25vA.
At smaller w‖α , our theory is not applicable because the
approximate dispersion relations do not reproduce the resonant
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wavenumber range to the necessary degree of accuracy. One
of our motivations for carrying out this calculation is to
enable more detailed comparisons between these instability
thresholds and spacecraft measurements. Such comparisons will
be important for furthering our understanding of the extent
to which instabilities limit differential flow and alpha-particle
temperature anisotropy in the solar wind. A second motivation
for our carrying out an analytic calculation is that it illustrates
the physical processes that determine the instability criteria,
thereby offering additional insights into these instabilities.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the linear theory of resonant
wave–particle interactions. In Section 3, we apply this theory
to derive the instability thresholds for A/IC waves and FM/W
waves and compare these thresholds with numerical solutions
to the full hot-plasma dispersion relation. Section 4 describes
the effects of varying nα/np and the electron temperature Te. In
Section 5, we present analytic fits to contours of constant growth
rate for A/IC and FM/W waves in the T⊥α/T‖α–w‖α/vA and
Uα/vA–w‖α/vA planes. In Section 6, we present a graphical
description of the instability mechanism for both wave types
and discuss the way that the alpha particle distribution function
evolves in response to resonant interactions with unstable A/IC
waves and FM/W waves. We discuss the influence of large-scale
magnetic-field-strength fluctuations on the radial evolution of
Uα in Section 7 and summarize our conclusions in Section 8.

2. RESONANT WAVE–PARTICLE INTERACTIONS

We consider a plasma consisting of protons, electrons,
and alpha particles with a background magnetic field of the
form B0 = (0, 0, B0). Kennel & Wong (1967) calculated the
growth/damping rate of waves with |γk| � |ωkr|, where ωkr is
the real part of the frequency ωk at wavevector k and γk is its
imaginary part. The alpha-particle contribution to γk is given by

γ α
k

|ωkr| = π

8nα

∣∣∣∣ωkr

k‖

∣∣∣∣
(

ωpα

ωkr

)2 +∞∑
n=−∞

∫ ∞

0
dv⊥v2

⊥

×
∫ +∞

−∞
dv‖ δ

(
v‖ − ωkr − nΩα

k‖

) |ψn,k|2Ĝfα

Wk

, (2)

where

Wk ≡ 1

16π

[
B∗

k · Bk + E∗
k · ∂

∂ω
(ωεh)Ek

]∣∣∣∣
ω=ωkr

, (3)

and fα is the alpha-particle distribution function. The quantities

Ek(k, t) =
∫

V

E(x, t)e−ik·xd3x (4)

and

Bk(k, t) =
∫

V

B(x, t)e−ik·xd3x (5)

are the Fourier transforms of the electric and magnetic fields
E(x, t) and B(x, t), after these fields have been multiplied by
a window function of volume V.2 The left and right circularly
polarized components of the electric field are given by Ek,l ≡
(Ekx + iEky)/

√
2 and Ek,r ≡ (Ekx − iEky)/

√
2. εh denotes the

2 This Fourier transform convention was described in greater detail by Stix
(1992), although his definitions of Ek and Bk differ from ours by a factor of
(2π )−3/2.

Hermitian part of the dielectric tensor. The plasma frequency of
the alpha particles is defined by ω2

pα ≡ 4πnαq2
α/mα , where qα

and mα are the alpha-particle charge and mass,

Ĝ ≡
(

1 − k‖v‖
ωkr

)
∂

∂v⊥
+

k‖v⊥
ωkr

∂

∂v‖
, (6)

and

ψn,k ≡ 1√
2

[Ek,re
iφJn+1(xα) + Ek,le

−iφJn−1(xα)]

+
v‖
v⊥

EkzJn(xα). (7)

The argument of the nth-order Bessel function Jn is given
by xα = k⊥v⊥/Ωα , and Ωα = qαB0/mαc is the cyclotron
frequency of the alpha particles. The velocity is described
in cylindrical coordinates with the components v⊥ and v‖
perpendicular and parallel to B0. The wavevector components
are given by k⊥ and k‖ in the same geometry, and the azimuthal
angle of the wavevector is denoted φ. Only waves and particles
fulfilling the resonance condition

ωkr = k‖v‖ + nΩα (8)

participate in the resonant wave–particle interaction because
of the delta function in Equation (2), which arises formally
in Kennel & Wong’s (1967) analysis because of the condition
|γk| � |ωkr|.

For concreteness, we take ωkr > 0 and k‖ > 0, preserving
full generality by allowing (initially) Uα to be either positive,
zero, or negative. However, we find below that the plasma is
most unstable to drift-anisotropy instabilities when the waves
propagate in the same direction as the alpha-particle beam, and
so we focus on the case Uα > 0. We assume that fα is a drifting
bi-Maxwellian,

fα = nα

π3/2w2
⊥αw‖α

exp

(
− v2

⊥
w2

⊥α

− (v‖ − Uα)2

w2
‖α

)
, (9)

where

w⊥α ≡
√

2kBT⊥α

mα

(10)

and

w‖α ≡
√

2kBT‖α
mα

(11)

are the perpendicular and parallel thermal speeds. The operator
Ĝ from Equation (6) applied to the distribution function fα

yields

Ĝfα = − 2v⊥fα

w2
‖αωkr

[
T‖α
T⊥α

(ωkr − k‖v‖) + k‖(v‖ − Uα)

]
. (12)

The delta function in Equation (2) can be used to evaluate the
integral over v‖ in Equation (2). This delta function can be
written in the form δ(v‖ − vres), where

vres ≡ ωkr − nΩα

k‖
. (13)

For the following discussion, we focus on waves with Wk > 0.
The arguments are inverted for negative-energy waves. This
effect is, however, not relevant for the parameter range explored
in this study (cf. Verscharen & Chandran 2013).
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3. INSTABILITY CRITERIA

We develop our analytical model for the case of parallel
propagation (k⊥ = 0) only. In this limit, the A/IC wave is
left-circularly polarized, and the FM/W wave is right-circularly
polarized. For simplicity, we restrict our analysis of the A/IC
instability to the case in which T⊥α � T‖α and our analysis of
the FM/W instability to the case in which T⊥α � T‖α . Collisions
are neglected throughout our treatment.

3.1. Instability of the Alfvén/Ion–Cyclotron (A/IC) Mode

In the limit of parallel propagation, the Bessel functions in
Equation (7) allow for contributions to the sum over n at n = 1,
n = −1, or n = 0 only. For the left-circularly polarized A/IC
wave, Ek,r = Ekz = 0 and Ek,l �= 0. As a consequence, ψn,k = 0
unless n = 1, and Equation (2) reduces to

γ α
k = 1

16
√

π

ωkr

|k‖w‖α|
(

ωpα

ωkr

)2
T⊥α

T‖α

|Ek,l|2
Wk

×
[

Ωα

(
1 − T‖α

T⊥α

)
− ωkr + k‖Uα

]

× exp

(
− (vres − Uα)2

w2
‖α

)
. (14)

The number of resonant particles is proportional to both ω2
pα and

the exponential term in Equation (14), and these terms influence
the absolute value of γ α

k . On the other hand, the sign of the
growth rate is determined solely by the terms in brackets in
Equation (14), since the other terms are positive semi-definite
for ωkr > 0. We find

sgn γ α
k = sgn

[
Ωα

(
1 − T‖α

T⊥α

)
− ωkr + k‖Uα

]
. (15)

This relation defines the maximum frequency at which alpha
particles have a destabilizing influence upon the A/IC wave at
a given temperature anisotropy, drift, and wavenumber,

ωA/IC
max = Ωα

(
1 − T‖α

T⊥α

)
+ k‖Uα. (16)

In a plot showing the real part of the frequency ωr versus k‖,
solutions of the dispersion relation can be driven unstable by
alpha particles only when the plot of the dispersion relation
is below the line defined by Equation (16). The expressions
in Equations (15) and (16) are valid for the general case in
which the wave frequency is determined from the full dispersion
relation of a hot plasma. However, to simplify the calculation,
we now approximate the dispersion relation of the A/IC wave
with the dispersion relation of a cold electron–proton plasma
with massless electrons,3

ωkr

Ωp
= −k2

‖v
2
A

2Ω2
p

[
1 −

√
1 +

4Ω2
p

k2
‖v

2
A

]
. (17)

3 We use the equations k2
‖c

2 = ω2L for the A/IC wave and k2
‖c

2 = ω2R for
the FM/W wave following the notation of Stix (1992). Equation (17) follows,
for example, from Equation (5) in Chapter 2 of Stix (1992) under the
approximations that ω � Ωe and vA � c. Details on modifications of the
dispersion relations of the two parallel normal modes due to alpha particles
and finite-pressure effects are described in the literature (see, e.g., Marsch &
Verscharen 2011; Verscharen & Marsch 2011; Verscharen 2012).
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Figure 1. Resonances and instability conditions for the Alfvén/ion–cyclotron
(A/IC) mode. The upper diagram shows the approximate dispersion relation,
resonance lines, and the quantities k1, k2, ω1, and ω2 discussed in the text for
the case in which Uα = 0.25vA, T⊥α/T‖α = 2, w‖α = 0.75vA, and σ = 2.4.
The lower panel shows solutions of the full dispersion relation of a hot plasma
for the same parameters with the real part of the frequency on the left axis and
the corresponding growth rate on the right axis. The additional parameters are
nα = 0.05np and Tp = Te = T‖α/4. Protons and electrons have no temperature
anisotropy.

(A color version of this figure is available in the online journal.)

When k‖vA � Ωp, Equation (17) can be approximated as

ωkr � k‖vA

(
1 − k‖vA

2Ωp

)
. (18)

As we will describe further below, the wavenumbers at which
the A/IC mode is unstable for typical solar-wind parameters
near 1 AU are �0.5Ωp/vA. To further simplify our analysis, we
will thus use Equation (18) instead of Equation (17).

At the resonant velocity v‖ = vres, a large enough number of
particles have to be present in the distribution function to drive
the wave unstable. This requires that

|v‖ − Uα| < σw‖α ≡ Δv‖, (19)

where σ is a number that cannot be much greater than unity.
We define the resonance line of the alpha particles through the
equation

ωr = k‖(Uα − Δv‖) + Ωα = k‖(Uα − σw‖α) + Ωα. (20)

It represents the resonance condition Equation (8) for alpha
particles at the parallel velocity v‖ = Uα −Δv‖. The intersection
of the alpha-particle resonance line in the ωr–k‖ plane with
the plot of the dispersion relation of the A/IC wave defines the
point (k1, ω1) as illustrated in Figure 1. Only solutions of the
dispersion relation at k‖ > k1 and ωkr > ω1 are able to interact
resonantly with a sufficiently large number of alpha particles to
excite an instability.

Although we have only quoted the expression for the alpha-
particle contribution to γk in Section 2, the proton contribution
is given by an analogous expression (Kennel & Wong 1967),
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in which the resonance condition becomes ωkr = k‖v‖ + nΩp,
where Ωp = 2Ωα is the proton cyclotron frequency. We assume
that the protons have a Maxwellian distribution, which means
that they damp A/IC waves if they can satisfy the resonance
condition with n = 1. Because the protons are the dominant
ion species, we assume that if thermal protons can resonate
with A/IC waves, then proton damping dominates over any
possible wave destabilization by the alpha particles. We define
the resonance line of the protons through the equation

ωr = −k‖σw‖p + Ωp, (21)

where w‖p is the parallel proton thermal speed. Equation (21) is
the n = 1 resonance condition for protons with v‖ = −σw‖p.
For simplicity, in this section we take σ to be the same for alpha
particles and protons for our fiducial case in which nα = 0.05np.
However, in Section 4 we describe how σ should be varied for
alpha particles as nα/np is varied. We plot the proton resonance
line in Figure 1 for the case in which w‖p = w‖α , which is
characteristic of weakly collisional solar-wind streams at 1 AU
(Kasper et al. 2008). The intersection of this resonance line and
the plot of the dispersion relation in the ωr–k‖ plane defines
an upper limit for the unstable wavenumbers and frequencies.
We denote this intersection point as (k2, ω2) as illustrated in
Figure 1.

The above considerations lead to the following necessary and
sufficient conditions for the A/IC wave to be unstable:

1. There must exist a range of wavenumbers in which thermal
alpha particles can resonate with the A/IC wave that is
sufficiently small that proton cyclotron damping can be
neglected: i.e., k1 exists, and k1 < k2.

2. In at least part of the wavenumber interval [k1, k2], the
wave frequency ωkr must be less than the maximum wave
frequency given by ω

A/IC
max .

We henceforth restrict our analysis to the case in which

σw‖p >
vA

2
. (22)

Equation (22) implies that k2vA/Ωp < 1, so that proton
cyclotron damping limits potential instabilities to parallel
wavenumbers less than Ωp/vA, for which our approximate dis-
persion relation is at least approximately valid.

After some algebra, we find that condition 1 above is
equivalent to the inequality

σw‖α >
4Uα + 3σw‖p − vA −

√
(σw‖p + vA)2 − 2v2

A

4
. (23)

Condition 2 is satisfied either if

Uα > vA − σ

(
T⊥α

T‖α
− 1

)
w‖α − v2

AT‖α
4σw‖αT⊥α

(24)

and

σw‖α >
vAT‖α
2T⊥α

, (25)

or if

Uα >
T⊥α + T‖α

4T⊥α

[
σw‖p + vA +

√
(vA + σw‖p)2 − 2v2

A

] − σw‖p.

(26)

Because the wave frequency ωkr in Equation (18) is concave
downward (d2ωkr/dk2

‖ < 0), the condition that ωkr < ω
A/IC
max

within the interval [k1, k2] is most easily satisfied at either
k‖ = k1 or k‖ = k2. Equations (24) and (25) are the conditions
that ωkr < ω

A/IC
max at k‖ = k1, while Equation (26) is the condition

that ωkr < ω
A/IC
max at k‖ = k2. In the Appendix, we show which of

these two alternative conditions is less restrictive (and therefore
the controlling instability criterion) as a function of w‖α/vA,
w‖p/vA, and T⊥α/T‖α . Roughly speaking, for typical solar wind
conditions near r = 1 AU, Equations (24) and (25) are less
restrictive when T⊥α � 1.1T‖α , while Equation (26) is less
restrictive for nearly isotropic alpha-particle temperatures. To
apply these conditions, one can either consult the conditions
given in the Appendix, or take the minimum Uα needed to
excite the instability to be the minimum of the right-hand sides
of Equations (24) and (26) (with the caveat that Equation (24)
applies only when Equation (25) is also satisfied).

For reference, we note that Equation (24) can be rewritten as
a lower limit on the temperature anisotropy,

T⊥α

T‖α
>

vA + σw‖α − Uα +
√

(vA + σw‖α − Uα)2 − v2
A

2σw‖α
. (27)

Equation (26) can be equivalently rewritten as an upper limit on
the inverse temperature anisotropy,

T‖α
T⊥α

<
2

v2
A

(Uα + σw‖p)

× [
vA + σw‖p −

√
(vA + σw‖p)2 − 2v2

A

] − 1. (28)

Likewise, Equation (23) can be rewritten as an upper limit on
the drift speed,

Uα <
4σw‖α − 3σw‖p + vA +

√
(vA + σw‖p)2 − 2v2

A

4
. (29)

In addition to the illustrations for our analytical model,
Figure 1 shows solutions of the full dispersion relation of a hot
plasma for the A/IC mode in the lower panel. These results have
been obtained with the NHDS code (Verscharen et al. 2013).
The parameters for the NHDS calculation are T‖α = 4Tp = 4Te,
nα = 0.05np, T⊥α = 2T‖α , T⊥ = T‖ for electrons and protons,
Uα = 0.25vA, and w‖α = 0.75vA. In all numerical calculations
presented throughout the text, we set

vA/c = 10−4 (30)

and choose the electron number density and electron bulk drift
velocity so that the net space charge and net parallel current
vanish. The onset of the instability (i.e., the wavenumber range
where γk > 0) coincides well with the predictions from our
analytical model.

We compare the analytical instability conditions from
Equations (24) and (25) with solutions of the full dispersion
relation of a hot plasma in Figure 2. We have adjusted the single
free parameter σ to maximize the agreement between our ana-
lytic and numerical results, and find that σ = 2.4 leads to the best
fit with the numerical solutions corresponding to γm = 10−4Ωp
(but see Section 4). We note that the wavenumbers at which the
maximum growth rates occur in the NHDS solutions are less
than 0.7Ωp/vA.
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Figure 2. Comparison of the instability criteria and numerical solutions to the
hot-plasma dispersion relation for the A/IC mode. The black and red dashed
lines correspond to Equation (24) for two different temperature anisotropies.
The green double dashed line shows the upper limit on Uα from Equation (29).
We set σ = 2.4. The points represent solutions of the hot-plasma dispersion
relation from the NHDS code with the given maximum growth rate γm. The
density of the alpha particles is nα = 0.05np, Tp = Te = T‖α/4, and protons
and electrons have isotropic distribution functions in the NHDS solutions.

(A color version of this figure is available in the online journal.)

Equation (26) describes a lower threshold than Equations (24)
and (25) in the isotropic limit. We show this case in Figure 3,
in which we also compare the threshold with the previous
isotropic-temperature model developed by Verscharen et al.
(2013) and with NHDS solutions with γm = 10−4Ωp. We see
that the lower and upper limits described by our instability
criteria agree well with the previous model, which is based
on two alternative approximations to the dispersion relation.
We note that the difference between the instability thresholds
from Equations (24) and (26) is small. The difference between
the two analytic expressions is in most cases smaller than the
difference between either of them and the solution to the hot-
plasma dispersion relation. We find a similar behavior in all
tested cases for which Equation (26) describes a lower threshold.
At high parallel thermal speeds w‖α , the inaccuracies of our
approximate dispersion relation increase. For a more extensive
discussion of Equation (26) and the comparison between the
two thresholds, we refer the reader again to the Appendix.

3.2. Instability of the Fast-magnetosonic/Whistler
(FM/W) Mode

For the right-circularly polarized FM/W mode, Ek,l = Ekz =
0 and Ek,r �= 0. As a result, ψn,k = 0 unless n = −1, and
Equation (2) reduces to

γ α
k = 1

16
√

π

ωkr

|k‖w‖α|
(

ωpα

ωkr

)2
T⊥α

T‖α

|Ek,r|2
Wk

×
[

Ωα

(
T‖α
T⊥α

− 1

)
− ωkr + k‖Uα

]

× exp

(
− (vres − Uα)2

w2
‖α

)
. (31)
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Figure 3. Comparison of the instability criteria and numerical solutions to the
hot-plasma dispersion relation for the A/IC mode in the isotropic case. The label
“VBCM13” refers to the treatment of the isotropic parallel Alfvénic instability
by Verscharen et al. (2013). Equation (26) leads to a lower Uα threshold than
Equation (24). The points represent solutions of constant γm obtained from
the NHDS code. We set σ = 2.4. For the NHDS solutions, nα = 0.05np,
Tp = Te = T‖α/4, and protons and electrons have Maxwellian distribution
functions.

(A color version of this figure is available in the online journal.)

It follows that

sgn γ α
k = sgn

[
Ωα

(
T‖α
T⊥α

− 1

)
− ωkr + k‖Uα

]
. (32)

Equation (32) defines the maximum frequency at which alpha
particles have a destabilizing influence on the FM/W wave at a
given temperature anisotropy, drift, and wavenumber,

ωFM/W
max = Ωα

(
T‖α
T⊥α

− 1

)
+ k‖Uα. (33)

Equation (8) implies that the resonant alpha particles that drive
the FM/W mode unstable have a parallel velocity v‖ > 0, since
we have assumed that ωkr > 0.

To simplify the analysis, we approximate ωkr using the
dispersion relation for right-circularly polarized FM/W waves
in a cold proton–electron plasma with massless electrons,4

ωkr

Ωp
= k2

‖v
2
A

2Ω2
p

[
1 +

√
1 +

4Ω2
p

k2
‖v

2
A

]
. (34)

We further simplify ωkr by taking k‖vA/Ωp � 1 and expanding
Equation (34) as

ωkr � k‖vA

(
1 +

k‖vA

2Ωp

)
. (35)

From the resonance condition Equation (8), we conclude that
there is a minimum value of v‖ for which alpha particles can
resonate with the FM/W wave. Again there must be a sufficient
number of alpha particles at that v‖ to excite the instability. We
make the approximation that the instability is possible only if
alpha particles with v‖ = Uα + σw‖α resonate with the wave,
where σ is a constant of order unity, as in Section 3.1. We

4 Equation (34) follows, for example, from Equation (5) in Chapter 2 of Stix
(1992) under the approximations that ω � Ωe and vA � c.
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Figure 4. Upper diagram: resonances and instability conditions for the
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T⊥α/T‖α = 0.6, w‖α = vA, and σ = 2.1. Lower diagram: numerical solutions
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real part of the frequency on the left axis and the corresponding growth rate on
the right axis. The additional parameters are nα = 0.05np, Tp = Te = T‖α/4.
Protons and electrons have no temperature anisotropy.

(A color version of this figure is available in the online journal.)

therefore define the alpha-particle resonance line for the FM/W
wave through the equation

ωr = k‖(Uα + σw‖α) − Ωα. (36)

Its intersection with the plot of the dispersion relation is denoted
(k3, ω3), as illustrated in Figure 4.

As in the case of the A/IC wave, the necessary and sufficient
conditions for instability of the FM/W wave consist of two
criteria. First, there must be some range of wavenumbers
exceeding k3 in which the wave frequency ωkr is less than the
maximum wave frequency ω

FM/W
max . We write this condition after

some algebra as

Uα > vA − σ

(
1 − T⊥α

T‖α

)
w‖α +

v2
AT‖α

4σw‖αT⊥α

. (37)

We can rewrite Equation (37) as a minimum threshold for the
temperature anisotropy at a given drift speed:

T⊥α

T‖α
<

Uα + σw‖α − vA +
√

(Uα + σw‖α − vA)2 − v2
A

2σw‖α
. (38)

The point (k3, ω3) is only defined if

Uα > 2vA − σw‖α. (39)

If Equation (39) is not fulfilled, the alpha-particle resonance line
does not intersect with the plot of the dispersion relation in the
ωr–k‖ plane, and the square-root expression in Equation (38) is
not real.

The second condition is that the proton thermal speed must be
sufficiently small that proton damping can be neglected within
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Figure 5. Comparison of the analytic instability criteria and numerical solutions
to the hot-plasma dispersion relation for the FM/W mode. The black solid and
red dashed lines show the analytical result for the stability thresholds according
to Equation (37) for two different temperature anisotropies. We set σ = 2.1.
The points represent solutions of the hot-plasma dispersion relation obtained by
NHDS at the given maximum growth rate γm. The density of the alpha particles
is nα = 0.05np, Tp = Te = T‖α/4, and protons and electrons have Maxwellian
distribution functions for the NHDS evaluation.

(A color version of this figure is available in the online journal.)

some part of the wavenumber interval defined in the previous
paragraph (in which k‖ > k3 and ωkr < ω

FM/W
max ). Because

the FM/W wave is right-circularly polarized, proton damping
occurs through the n = −1 resonance. As in our treatment of
the A/IC wave, we assume that if thermal protons can resonate
with the FM/W wave, then proton damping dominates over
any possible destabilizing influence from the resonant alpha
particles. This second condition can be written in the form

σw‖p <
3Uα + 3σw‖α − vA +

√
(Uα + σw‖α − vA)2 − v2

A

2
.

(40)

In this paper, we focus on the case in which w‖p = w‖α . The
conditions w‖p � w‖α and Uα � 0 guarantee that Equation (40)
is satisfied.

We show NHDS solutions for the FM/W mode in the lower
panel of Figure 4. The range of unstable wavenumbers roughly
corresponds to the predictions from our analytical model. At
wavenumbers exceeding ∼0.45Ωp/vA, ωkr > ω

FM/W
max and,

therefore, the interaction with the alpha particles leads to a
damping instead of an instability. In contrast to the A/IC wave,
the instability of the FM/W wave involves only a lower limit
on Uα .

In Figure 5, we plot Equation (37) for two different values
of T⊥α/T‖α , along with the locations of fixed maximum growth
rates in numerical solutions to the full hot-plasma dispersion
relation obtained with the NHDS code. As in Section 3.1, we
vary the parameter σ , and find that the value σ = 2.1 leads to
the best fit between the analytic threshold and NHDS solutions
with γm = 10−4Ωp for the FM/W instability, especially in the
range of low w‖α/vA where our approximate dispersion relation
is more accurate. The NHDS solutions for the maximum growth
rate of the instability of the FM/W mode occur at wavenumbers
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analytical thresholds from Equations (27) and (28) for the A/IC mode, and the
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for the A/IC instability and σ = 2.1 for the FM/W instability. The dashed lines
show fit results from Maruca et al. (2012) as isocontours for a maximum growth
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The parameters for the NHDS calculation are nα = 0.05np, Tp = Te = T‖α/4.
Protons and electrons have Maxwellian distribution functions.

(A color version of this figure is available in the online journal.)

below k‖vA/Ωp ∼ 0.8. This justifies our expansion of Equa-
tion (34) to obtain Equation (35).

Another way of illustrating the instability thresholds is shown
in Figure 6. In this figure, we compare our analytic thresholds
for the A/IC wave and the FM/W wave (Equations (27), (28),
and (38)) with NHDS solutions to the full hot-plasma dispersion
relation for the cases Uα = 0 and Uα = 0.4vA. We find a
very good agreement between our analytical thresholds and
the NHDS solutions at low growth rates. The presence of a
non-zero drift Uα lowers the thresholds in terms of |T⊥α/T‖α−1|
and narrows the stable parameter range. By applying the NHDS
code to find parameter combinations that lead to γm = 10−2Ωp,
we are able to confirm the previous fit results by Maruca et al.
(2012) for T‖α = 4T‖p and T⊥p = T‖p, which are also included in
Figure 6. The comparison also shows in which parameter ranges
the isocontours of constant maximum growth rate have larger
distances and where they have shorter distances from each other.
The FM/W instability shows a very sensitive dependence on
the assumed growth rate. Our threshold for the instability of the
FM/W mode drops abruptly at the point where Equation (39)
is violated. We expect a smoother transition in a real plasma
since the number of resonant particles does not drop to zero
at a discrete value of v‖. The location of the point where the
analytical threshold drops depends on the assumed value of σ .

4. THE DEPENDENCE ON THE ALPHA-PARTICLE
NUMBER DENSITY AND THE ELECTRON

TEMPERATURE

In the previous sections, we assumed that σ does not depend
upon plasma parameters and determined the values of σ by
comparing our analytic thresholds to numerical solutions of the
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Figure 7. Dependence of the instability thresholds on nα/np in the case in
which w‖p = w‖α = vA and Tp = Te. The points represent NHDS solutions
at two different growth rates of the A/IC and the FM/W modes. The curves
correspond to the analytical thresholds from Equations (24) and (37) with σ of
the alphas described by Equation (42).

(A color version of this figure is available in the online journal.)

hot-plasma dispersion relation for a single value of nα/np. We
conjecture, however, that as nα/np varies, the number of reso-
nant particles that are needed in order to achieve an instability
(as a fraction of np) remains constant, i.e., (nα/np) exp(−σ 2) ≡
M = constant. A good value for this constant determined from
the comparison of our analytical thresholds and the hot-plasma
dispersion relation at nα = 0.05np is given by

M =
{

1.6 × 10−4 for the A/IC wave
6.1 × 10−4 for the FM/W wave.

(41)

This requirement leads to a density dependence of the factor σ
for the alpha particles of the form

σ =
√

− ln
Mnp

nα

. (42)

For the protons, we continue to set σ = 2.4 for the A/IC
wave and σ = 2.1 for the FM/W wave as nα/np varies. Thus,
Equation (42) is used for each factor of σ that multiplies the
quantity w‖α in any of our equations, but the values σ = 2.4
and σ = 2.1, respectively, are used for each value of σ that
multiplies the quantity w‖p. We illustrate the dependence of
the thresholds on the fractional alpha-particle density for two
sets of parameters in Figure 7. We show NHDS solutions for a
maximum growth rate of γm = 10−4Ωp for the A/IC instability
and the FM/W instability. We compare the NHDS points
with the analytical instability thresholds from Equations (24)
and (37). The thresholds plotted in Figure 7 have been calculated
using Equation (42).

In the fast solar wind, nα/np � 0.05 (Bame et al. 1977), while
in the slow solar wind nα/np is roughly proportional to the wind
speed, with 0.01 � nα/np � 0.05 (Kasper et al. 2007). Within
the range 0.01 < nα/np < 0.05, the instability thresholds
shown in Figure 7 exhibit a moderate density dependence,
which is captured fairly accurately by taking σ fixed at the
values 2.4 (A/IC) or 2.1 (FM/W) for the protons and using
Equation (42) for the alpha particles. We conjecture that this
approach for modeling σ approximately captures the density
dependence of the instability thresholds more generally, at least

7



The Astrophysical Journal, 773:163 (13pp), 2013 August 20 Verscharen, Bourouaine, & Chandran

Table 1
Fit Parameters for Isocontours of Constant γm of the A/IC Instability

in the Uα/vA–w‖α/vA Plane for Use in Equations (43) and (44)

T⊥α/T‖α γm/Ωp a b A B C Umed/vA

1.2 1 × 10−4 −2.264 1.997 0.312 2.34 0.389 0.65
1.2 5 × 10−4 −2.510 2.366 0.174 4.41 0.750 0.65
1.2 1 × 10−3 −2.576 2.599 0.164 3.38 0.952 0.65
1.2 3 × 10−3 −2.40 3.188 0.046 8.7 1.585 0.75
1.2 1 × 10−2 −3.28 5.807 0.305 −2.10 3.093 0.65

1.4 1 × 10−3 −1.365 1.335 0.454 1.95 0.481 0.55
1.4 3 × 10−3 −1.328 1.661 0.350 2.55 0.916 0.55
1.4 1 × 10−2 −1.118 2.622 0.146 4.39 2.053 0.55

1.8 1 × 10−3 −0.724 0.649 0.735 1.210 0.067 0.45
1.8 3 × 10−3 −0.699 0.813 0.726 1.346 0.286 0.45
1.8 1 × 10−2 −0.589 1.242 0.570 1.87 0.962 0.35

2.0 1 × 10−4 −0.471 0.371 0.602 1.225 −0.038 0.35
2.0 5 × 10−4 −0.505 0.449 1.16 0.58 −0.47 0.40
2.0 1 × 10−3 −0.583 0.507 0.801 1.080 −0.041 0.40
2.0 1 × 10−2 −0.462 0.971 0.701 1.548 0.682 0.35

Table 2
Fit Parameters for Isocontours of Constant γm of the A/IC Instability

in the T⊥α/T‖α–w‖α/vA Plane for Use in Equation (45)

Uα/vA γm/Ωp a b w0/vA wmin/vA

0 10−4 0.394 0.958 −0.0150 0.10
0 10−3 0.529 0.949 −0.0143 0.10
0 10−2 0.977 0.876 0.0036 0.10

0.4 10−4 0.219 0.92 0.000 0.15
0.4 10−3 0.272 0.712 0.124 0.15
0.4 10−2 0.749 0.853 0.134 0.20

when nα/np ∈ (0.01, 0.05). When nα/np > 0.05, the alpha
particles increasingly modify the dispersion relation, and we
expect our analytic results to become less accurate.

Another parameter that could in principle influence the
thresholds of the instability is the ratio Te/Tp. However, we
expect that this temperature ratio has a negligible influence on
both instabilities since the corresponding waves have Ekz = 0
and k⊥ = 0, which means that electrons cannot interact
with these waves through Landau or transit-time damping.
Cyclotron-resonant interaction is also not expected to influence
the wavenumber range where alpha-particle driving is important
because Ωe � Ωα . NHDS calculations at different Te/Tp in the
interval [0.1, 10] show variations of the thresholds of Uα by less
than one percent for both instabilities under typical parameters.
This confirms that the parallel-propagating drift/anisotropy
instabilities are largely insensitive to electron temperatures
within the range of possible solar-wind values.

5. CONTOURS OF CONSTANT MAXIMUM
GROWTH RATE

In this section, we present analytic fits to the contours of
constant maximum growth rate γm in our numerical solutions
to the hot-plasma dispersion relation. In all cases, we have set
Tp = Te = T‖α/4 and T⊥ = T‖ for protons and electrons. As we
have shown in Section 4, the instability thresholds are density-
dependent in general. For the fits presented in this section,
however, we set nα = 0.05np as the typical observed value
in the fast solar wind.

Table 3
Fit Parameters for Isocontours of Constant γm of the FM/W Instability

in the Uα/vA–w‖α/vA Plane for Use in Equation (46)

T⊥α/T‖α γm/Ωp a b c

0.8 5 × 10−5 0.047 −0.689 1.408
0.8 1 × 10−4 0.037 −0.625 1.401
0.8 1 × 10−3 0.000 −0.359 1.352
0.8 3 × 10−3 −0.011 −0.205 1.311
0.8 1 × 10−2 −0.0288 0.039 1.170

0.5 1 × 10−3 0.198 −1.440 1.789
0.5 3 × 10−3 0.083 −0.990 1.681
0.5 1 × 10−2 −0.0352 −0.384 1.468

0.4 5 × 10−5 0.570 −2.717 2.019
0.4 1 × 10−4 0.514 −2.541 2.006
0.4 1 × 10−3 0.315 −1.826 1.923
0.4 1 × 10−2 −0.0144 −0.568 1.560

5.1. Alfvén/Ion–Cyclotron (A/IC) Instability

In the Uα/vA–w‖α/vA plane as in Figure 2, the NHDS
solutions show that two values of Uα/vA can potentially lead
to the same maximum growth rate γm at one given value of
w‖α/vA. For example, the points representing γm = 10−4Ωp
for T⊥α/T‖α = 1.2 in Figure 2 indicate that both Uα ≈ vA
and Uα ≈ 0.6vA lead to the same maximum growth rate at
w‖α ≈ 0.7vA. Therefore, we employ two fits to describe the
isocontours of constant γm. In the range 0 � Uα � Umed, we
apply a linear fit of the form

w‖α
vA

= a
Uα

vA
+ b. (43)

In the range Umed < Uα � 1.1vA, we assume a shifted power-
law function of the form

w‖α
vA

= A

(
Uα

vA

)B

+ C. (44)

The parameters for these fits are given in Table 1.
We also give fit results for the A/IC instability in the

T⊥α/T‖α–w‖α/vA plane for different values of Uα/vA as shown
in Figure 6. We use a similar fitting function to the formula
suggested by Hellinger et al. (2006):

T⊥α

T‖α
= 1 + a

(
w‖α
vA

− w0

vA

)−b

. (45)

The fitting parameters for a choice of values of Uα/vA and γm
are given in Table 2. These parameters are valid in the range
wmin � w‖α � 7vA.

5.2. Fast-magnetosonic/Whistler (FM/W) Instability

We first provide fit results for the FM/W instability in
the Uα/vA–w‖α/vA plane as shown in Figure 5. The NHDS
solutions are well represented by a parabolic function of
the form

Uα

vA
= a

(
w‖α
vA

)2

+ b
w‖α
vA

+ c. (46)

The corresponding fitting parameters for different temperature
anisotropies and growth rates are given in Table 3. The formulae
are valid in the range 0 � Uα � 1.1vA.
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Table 4
Fit Parameters for Isocontours of Constant γm of the FM/W Instability

in the T⊥α/T‖α–w‖α/vA Plane for Use in Equation (45)

Uα/vA γm/Ωp a b w0/vA wmin/vA

0 10−4 −0.345 0.742 0.530 0.80
0 10−3 −0.479 0.755 0.640 1.28
0 10−2 −1.052 0.900 0.697 1.90

0.4 10−4 −0.248 0.717 0.458 0.65
0.4 10−3 −0.347 0.707 0.556 0.84
0.4 10−2 −0.812 0.831 0.525 1.47

We apply Equation (45) also to the FM/W mode in order
to describe isocontours of constant γm in the T⊥α/T‖α–w‖α/vA
plane. The resulting fit parameters are given in Table 4. These
fits are valid in the range wmin � w‖α � 7vA.

6. QUASILINEAR EVOLUTION OF THE
ALPHA-PARTICLE DISTRIBUTION FUNCTION

Quasilinear theory is a theoretical framework for describ-
ing the evolution of a plasma under the effects of resonant
wave–particle interactions. Prerequisites for the application of
this description are small amplitudes and small growth or damp-
ing rates of the resonant waves. These assumptions imply that
the background distribution function changes on a timescale
that is much larger than the wave periods. Resonant particles of
species s diffuse in velocity space according to the equation

∂fs

∂t
= lim

V →∞

+∞∑
n=−∞

q2
s

8π2m2
s

∫
1

V v⊥
Ĝv⊥

× δ(ωkr − k‖v‖ − nΩs)|ψn,k|2Ĝfsd
3k (47)

(Stix 1992). The diffusive flux of particles in velocity space
is always tangent to semicircles centered on the parallel phase
velocity, which satisfy the equation

(v‖ − vph)2 + v2
⊥ = constant, (48)

where vph ≡ ωkr/k‖. At the same time, Equation (47) allows
for diffusion only from higher phase-space densities to lower
phase-space densities and, hence, resolves the ambiguity of the
tangential direction given by Equation (48).

Equations (2) and (47) together fulfill energy conservation
(Kennel & Wong 1967; Chandran et al. 2010). The alignment
of the gradients in velocity space and the semicircles given by
Equation (48) determine if the particles lose or gain kinetic
energy during the quasilinear diffusion process. When the
resonant particles lose kinetic energy, the wave gains energy
and becomes unstable.

Figure 8 illustrates how particles lose energy by interacting
with unstable A/IC waves. The resonant alpha particles that
drive the A/IC instability typically have a parallel velocity
v‖ < 0 in order to be able to fulfill Equation (8), which is
equivalent to v‖ = vres from Equation (13), with n = 1. Negative
values of v‖ (as measured in the proton rest frame) are needed
for the instability of the A/IC mode when βp � 1, because
protons damp the waves that resonate with alphas that have
v‖ > 0. Figure 8 shows how the interplay between temperature
anisotropy and relative drift leads to a change in the alignment
of the gradients of fα in velocity space and, therefore, to a
transition from a damped to an unstable situation.

(a)

(b)

Figure 8. Direction of the diffusive particle flux in velocity space for the
resonance with n = 1 (A/IC mode). Resonant particles diffuse in the direction
tangent to semicircles (black solid lines) centered on the parallel phase velocity
vph ≡ ωkr/k‖ at v‖ = vres < 0 from higher phase-space density to lower
phase-space density as shown by the red arrow. The drift speed is less than
the parallel phase speed of the waves. (a) Isotropic case with T⊥α = T‖α . The
diffusing particles gain kinetic energy and, therefore, damp the wave. (b) Case
with T⊥α > T‖α . The diffusing particles lose kinetic energy, thereby acting to
destabilize the wave.

(A color version of this figure is available in the online journal.)

(a)

(b)

Figure 9. Direction of the diffusive particle flux in velocity space for the
resonance with n = −1 (FM/W mode). Resonant particles diffuse in the
direction tangent to semicircles (black solid lines) centered on the parallel
phase velocity vph ≡ ωkr/k‖ at v‖ = vres > 0 from higher phase-space density
to lower phase-space density as shown by the red arrow. The drift speed is less
than the parallel phase speed of the waves. (a) Isotropic case with T⊥α = T‖α .
The diffusing particles gain kinetic energy and, therefore, damp the wave. (b)
Case with T⊥α < T‖α . The diffusing particles lose kinetic energy, thereby acting
to destabilize the wave.

(A color version of this figure is available in the online journal.)

The situation for the FM/W instability in velocity space is
illustrated in Figure 9. This figure shows how particles with
v‖ > ωkr/k‖ > Uα can lose or gain kinetic energy depending
on the alignment between velocity-space gradients and the
diffusion paths.

Quasilinear diffusion reduces the temperature anisotropy and
the relative drift, which are the two sources of free energy for
the A/IC and FM/W instabilities, as illustrated by the initial
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(A color version of this figure is available in the online journal.)

diffusion paths in Figures 8 and 9. Since only part of the
distribution function participates in the diffusion, the resulting
distribution function cannot be described as a more isotropic
bi-Maxwellian at lower drift speed, but will show additional
non-Maxwellian structures. Such a shaped distribution function
will carry waves with modified dispersion relations compared to
the initially bi-Maxwellian distribution function. The treatment
of such waves, however, lies beyond the scope of this paper.

7. REGULATION OF Uα BY INSTABILITIES:
THE POSSIBLE ROLE OF LARGE-SCALE

MAGNETIC-FIELD-STRENGTH FLUCTUATIONS

In Figure 10, we show the unstable parameter space in
the plane T⊥α/T‖α versus Uα/vA for three different values of
w‖α/vA. For each value of w‖α/vA, the unstable region lies above
and to the right of the A/IC curves, and below and to the right
of the FM/W curves. Variations in |B| at around the 10% level
are observed in the solar wind (Tu & Marsch 1995). As alpha
particles flow away from the Sun (and past the protons), they
alternately move through regions of larger |B| and smaller |B|,
which causes T⊥α/T‖α to fluctuate. A qualitative argument that
supports this claim follows from the idea of double-adiabatic
expansion: if alpha-particle heating and the alpha-particle heat
flux are neglected, then T⊥α/T‖α ∝ B3/n2

α (Chew et al. 1956;
Sharma et al. 2006). As T⊥α/T‖α varies, the instability threshold
varies. For some solar-wind streams, the alphas may alternate
between being susceptible to the A/IC instability and being
susceptible to the FM/W instability. For other streams, the sign
of T⊥α/T‖α − 1 may remain fixed, but the magnitude of this
quantity will vary. If at any point, the distribution becomes
unstable, the alphas will decelerate (and isotropize), and the
deceleration will be cumulative. As a result, due to the combined
action of |B| variations and scattering from instabilities, the
alphas can evolve to values of Uα and T⊥α/T‖α that are below
the local instability threshold (see also Seough et al. 2013). This
process is illustrated by the shaded rectangle in Figure 10 that
represents the range 0.9 � T⊥α/T‖α � 1.1. For a thermal speed
of w‖α = 2vA, this effect drives the plasma alternately into the
A/IC instability and into the FM/W instability for Uα � 0.6vA

if T⊥α/T‖α varies in that range. In this way, even a plasma that
is isotropic on average can be limited in Uα to a significantly
lower value than prescribed by the thresholds of the isotropic
beam instabilities.

8. CONCLUSIONS

We derive analytic instability criteria for parallel-propagating
(k⊥ = 0) A/IC waves and FM/W waves in the presence
of alpha particles that drift with respect to protons at an
average velocity UαB0/B0. We take the alpha particles to
have a bi-Maxwellian distribution function and the protons
and electrons to be Maxwellian, and we focus on the case
in which w‖p � 0.25vA. Our analysis is based on Kennel &
Wong’s (1967) expression for the growth rate γk of plasma waves
satisfying the inequality |γk| � |ωkr|. Rather than evaluate the
full expression for γk , we undertake the more modest task of
evaluating the sign of γk . Kennel & Wong’s (1967) formula
is rigorously correct in the limit |γk| � |ωkr|, but requires
knowledge of the precise value of the real part of the frequency
ωkr. Our analysis is based on an approximation to the dispersion
relation, as well as an approximate treatment of proton cyclotron
damping, and our results are therefore not exact. However, as
we summarize further below, our approximate analytic results
are in good agreement with numerical solutions to the full
hot-plasma dispersion relation, which gives us confidence that
our approximations are reasonable.

We find that the left-circularly polarized A/IC wave is driven
unstable by the n = 1 resonance (see Equation (8)) with
alpha particles that satisfy v‖ < 0 in the proton frame. In the
non-drifting limit (Uα = 0), this instability corresponds to the
parallel ion–cyclotron instability (e.g., Sagdeev & Shafranov
1961; Gary & Lee 1994). In the isotropic limit (T⊥α = T‖α),
this instability corresponds to the parallel Alfvénic instability
described by Verscharen et al. (2013). There are two separate
instability criteria for this mode. First, the alpha-particle parallel
thermal speed w‖α needs to be sufficiently large that there
is a wavenumber interval [k1, k2] in which thermal alpha
particles can resonate with the waves but thermal protons
cannot. Within this interval, proton cyclotron damping can be
neglected. Second, the alpha-particle drift velocity Uα and/or
temperature anisotropy T⊥α/T‖α need to be sufficiently large
that resonant interactions between alpha particles and A/IC
waves are destabilizing in the interval [k1, k2]. The mathematical
expressions of these criteria are given in Section 3.1.

The right-circularly polarized FM/W wave is driven unstable
by the n = −1 resonance with alpha particles with v‖ > 0 in the
proton frame. In the non-drifting limit (Uα = 0), this instability
corresponds to the parallel firehose instability (Quest & Shapiro
1996; Rosin et al. 2011). In the isotropic limit (T⊥α = T‖α), this
instability corresponds to the parallel magnetosonic instability
(Gary et al. 2000a; Li & Habbal 2000). The FM/W wave is
unstable if and only if the following conditions are satisfied.
First, Uα +σw‖α needs to be sufficiently large that thermal alpha
particles can resonate with the FM/W wave. Second, Uα and/or
T‖α/T⊥α need to be sufficiently large that there is an interval of
wavenumbers, say [k3, k4], within which resonant interactions
with alpha particles are destabilizing. Third, w‖p must be less
than a certain threshold (Equation (40)), so that resonant protons
are unable to damp the FM/W waves within at least part of the
wavenumber interval [k3, k4]. The mathematical expressions of
these criteria are given in Section 3.2.

The quantity σ that appears in our analytic instability criteria
is the maximum number of thermal speeds that the resonant
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particles’ v‖ can be from the center of the distribution before
there are too few resonant particles to cause significant ampli-
fication or damping of a mode. For example, if the only alpha
particles that can resonate with a particular wave are ten ther-
mal speeds out on the tail of the distribution, then there are not
enough resonant alpha particles to lead to an appreciable growth
rate for that wave. In our analytic calculations, σ functions like
a free parameter and is not determined from first principles. The
best choice for the value of σ depends upon what is meant by
“significant amplification” or “appreciable growth rate” in the
above discussion. We choose to set σ = 2.4 for the A/IC insta-
bility and σ = 2.1 for the FM/W instability for plasmas with
nα = 0.05np. Using numerical solutions to the full hot-plasma
dispersion relation, we find that this choice causes our analytic
instability criteria to correspond to parameter combinations for
which the maximum growth rate is �10−4Ωp for A/IC waves
and FM/W waves. In Section 4, we argue that this choice of σ
can be generalized to other solar-wind-relevant values of nα/np

by taking σ = [ln(6250nα/np)]1/2 for the alpha particles and
σ = 2.4 for the protons in the case of the A/IC instability, and
by taking σ = [ln(1640nα/np)]1/2 for the alpha particles and
σ = 2.1 for the protons in the case of the FM/W instability.
We present numerical solutions to the hot-plasma dispersion
relation to support this assertion. With this generalization, our
analytic instability criteria can be used to determine whether
A/IC and FM/W waves are stable or unstable as a function of
the following five dimensionless parameters: w‖α/vA, Uα/vA,
T⊥α/T‖α , T‖α/Tp, and nα/np. We also present arguments and
numerical evidence in Section 4 that the instability thresholds
of the parallel-propagating A/IC and FM/W waves are largely
insensitive to the value of a sixth parameter, Te/Tp. Knowl-
edge of how these instability thresholds depend upon the above
parameters will be useful for comparing these thresholds with
spacecraft observations to test the extent to which A/IC and
FM/W instabilities limit the differential flow and temperature
anisotropy of alpha particles in the solar wind.

In addition to deriving analytic expressions for the instabil-
ity thresholds, we use numerical solutions to the hot-plasma
dispersion relation to find analytic fits to contours of constant
maximum growth rates for A/IC and FM/W waves in both
the T⊥α/T‖α–w‖α/vA and Uα/vA–w‖α/vA planes. These fits are
presented in Section 5. In Section 6, we use quasilinear theory to
describe how some of the instability criteria can be understood
in terms of the change in the alpha particles’ kinetic energy
during resonant wave–particle interactions.

Finally, in Section 7 we discuss the possible role that large-
scale magnetic-field fluctuations play in the regulation of Uα and
T⊥α/T‖α . Spacecraft measurements indicate that the magnetic
field strength in the solar wind varies on roughly hour-long time
scales at the ∼10% level (Tu & Marsch 1995). As alpha particles
alternately move through larger-|B| and smaller-|B| regions, the
value of T⊥α/T‖α fluctuates, even in the absence of heating
(Chew et al. 1956; Sharma et al. 2006). These fluctuations in
T⊥α/T‖α subject the alpha particles to a time-varying Uα/vA
instability threshold. As variations in |B| cause alpha particles to
evolve from maximum anisotropy towards isotropy, the Uα/vA
instability threshold for these alpha particles increases, but Uα

does not, so that the alpha particles can evolve away from the
instability thresholds and into the stable part of parameter space,
even if collisions are negligible.

One of the limitations of our analysis is that we have taken the
alpha-particle distribution function to be bi-Maxwellian in order
to simplify the analysis. In the solar wind, the actual distribution

function is probably never bi-Maxwellian (e.g., Isenberg 2012),
and thus our treatment is only an approximation. Two other
limitations of our analysis are that we have neglected proton
temperature anisotropy and restricted our analysis to the case
of parallel-propagating waves with k⊥ = 0. It will be important
to relax these limitations in future research in order to further
advance our understanding of kinetic plasma instabilities in the
solar wind.

We appreciate helpful discussions with Ben Maruca and
Alex Schekochihin. This work was supported in part by grant
NNX11AJ37G from NASA’s Heliophysics Theory Program,
NASA grant NNX12AB27G, NSF/DOE grant AGS-1003451,
and DOE grant DE-FG02-07-ER46372.

APPENDIX

COMPARING THE TWO INSTABILITY THRESHOLDS
FOR THE A/IC WAVE

In Section 3.1, we found that the two necessary and sufficient
conditions for an instability of the A/IC wave are, first,
Equation (23) and, second, either Equations (24) and (25) or
Equation (26). In this appendix, we describe the conditions
under which Equations (24) and (25) lead to the less restrictive
“second condition” on Uα and the conditions under which
Equation (26) leads to the less restrictive second condition on
Uα . Because it is only necessary to satisfy either Equations (24)
and (25) or Equation (26), it is the less restrictive of these
two possibilities that is relevant for determining the instability
threshold.

After some algebra, we find that the right-hand sides of
Equations (24) and (26) are equal if either of the following
two equations is satisfied:5

σw‖p =
(

T⊥α

T‖α
− 1

)
σw‖α +

T‖α
2σw‖α(T⊥α − T‖α)

− vA (A1)

or

σw‖p = 2
T⊥α

T‖α
σw‖α +

v2
AT‖α

4σw‖αT⊥α

− vA. (A2)

For a fixed value of T⊥α/T‖α , Equations (A1) and (A2) corre-
spond to two curves in the w‖α/vA–w‖p/vA plane, which are
plotted in Figure 11 for the case in which T⊥α = 1.02T‖α and
σ = 2.4.

These two curves divide the w‖α/vA–w‖p/vA plane up into
the four regions, which are labeled in Figure 11. After some
additional algebra, one can show that the right-hand side
of Equation (29) (which is a restatement of the instability
condition in Equation (23)) is less than the right-hand sides
of Equations (24) and (26) in regions III and IV. There is
thus no interval of Uα values that can satisfy the instability
criteria in regions III and IV. On the other hand, the right-
hand side of Equation (29) is greater than the right-hand
sides of Equations (24) and (26) in regions I and II, and an
instability is possible in these two regions. One can show that
the right-hand side of Equation (26) is smaller than the right-
hand side of Equation (24) in region I, so that Equations (23)

5 Technically, Equation (A1) implies that the right-hand sides of
Equations (24) and (26) are equal only if the additional criterion
σw‖p/vA �

√
2 − 1 is also satisfied, but this condition is automatically

satisfied because Equation (22) has already restricted our analysis to
σw‖p > 0.5vA.
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(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

and (26) are the necessary and sufficient criteria for instability
in region I. In contrast, the right-hand side of Equation (24)
is smaller than the right-hand side of Equation (26) in region
II, and therefore Equations (23) and (24) are the necessary and
sufficient conditions for instability in region II. The minimum
value of σw‖α in region II is (0.5vAT‖α/T⊥α)[T⊥α/(T⊥α −
T‖α)]1/2, which is larger than the lower limit in Equation (25);
Equation (25) can thus be omitted as a separate condition in
region II.

In Figure 12, we re-plot the lines from Equations (A1)
and (A2) as in Figure 11 but for different temperature
anisotropies. The comparison between these two figures il-
lustrates how region I contracts as the temperature anisotropy
increases. The typical parameters of weakly collisional solar-
wind streams near 1 AU (w‖α � w‖p � vA) correspond to re-
gion II when T⊥α/T‖α � 1.1 (so that the instability criteria are
Equations (23)–(25)) and to region I when T⊥α/T‖α � 1.1 (so
that the instability criteria are Equations (23) and (26)).
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(A color version of this figure is available in the online journal.)

As mentioned in Section 3.1, Equation (24) is the condition
that ωkr < ω

A/IC
max at k‖ = k1, and Equation (26) is the condition

that ωkr < ω
A/IC
max at k‖ = k2 (see Figure 1 for the definitions of

these quantities). The existence of two alternative conditions,
Equations (24) and (26), thus rests on the idea that the most
unstable wavenumber can be located at either end of the interval
[k1, k2]. In Figure 13 we illustrate this possibility directly
using numerical solutions to the hot-plasma dispersion relation
obtained with the NHDS code (Verscharen et al. 2013).

We plot the real and imaginary parts of the A/IC wave
frequency for the case in which w‖α = 2w‖p and T⊥α = 1.1T‖α .
The drift speed (Uα = 0.646vA) is chosen in such a way that
the maximum-frequency line ωr = ω

A/IC
max from Equation (16)

intersects with the dispersion relation ωr = ωkr twice between
k1 and k2. The wavenumber range in this diagram can be divided
into five intervals. In the first interval (0 < k‖vA/Ωp < 0.15),
thermal particles cannot resonate with the waves, and γk is
vanishingly small. In the second range (0.15 < k‖vA/Ωp <
0.22), which contains k1, thermal alpha particles can resonate
with the waves, thermal protons cannot resonate, ωkr < ω

A/IC
max ,

and γk > 0. In the next interval (0.22 < k‖vA/Ωp < 0.3),
ωkr > ω

A/IC
max , alpha particles damp the waves, and γk < 0.

The growth rate then becomes positive again in the fourth
interval, (0.3 < k‖vA/Ωp < 0.38), because ωkr is again <ω

A/IC
max .

This fourth interval contains wavenumbers near k2. In the fifth
wavenumber interval (k‖vA/Ωp > 0.38), the number of resonant
protons is sufficiently large to damp the waves, and the damping
rate increases with k‖ because of the increase in the number of
resonant protons.
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