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ABSTRACT

We investigate the conditions under which parallel-propagating Alfvén/ion-cyclotron waves are driven unstable by
an isotropic (T⊥α = T‖α) population of alpha particles drifting parallel to the magnetic field at an average speed Uα

with respect to the protons. We derive an approximate analytic condition for the minimum value of Uα needed to
excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When
the alpha-particle number density is �5% of the proton number density and the two species have similar thermal
speeds, the instability requires that βp � 1, where βp is the ratio of the proton pressure to the magnetic pressure. For
1 � βp � 12, the minimum Uα needed to excite this instability ranges from 0.7vA to 0.9vA, where vA is the Alfvén
speed. This threshold is smaller than the threshold of �1.2vA for the parallel magnetosonic instability, which was
previously thought to have the lowest threshold of the alpha-particle beam instabilities at βp � 0.5. We discuss the
role of the parallel Alfvénic drift instability for the evolution of the alpha-particle drift speed in the solar wind.
We also analyze measurements from the Wind spacecraft’s Faraday cups and show that the Uα values measured in
solar-wind streams with T⊥α ≈ T‖α are approximately bounded from above by the threshold of the parallel Alfvénic
instability.

Key words: instabilities – interplanetary medium – plasmas – solar wind – turbulence – waves

Online-only material: color figures

1. INTRODUCTION

The solar wind is a plasma consisting of electrons, protons,
and other ion species. Among those ions, the alpha particles
play a particularly important role for the dynamics and thermo-
dynamics of the solar wind since their mass density is typically
about 15%–20% of the proton mass density. It has been known
for a long time that the alpha particles in the fast solar wind at
0.3 AU < r < 4.2 AU drift with respect to the protons with a
typical speed of order the local proton Alfvén speed

vA ≡ B√
4πnpmp

, (1)

where np and mp are the proton number density and the proton
mass, respectively, and B is the magnetic field strength (Marsch
et al. 1982a; Marsch & Livi 1987; Reisenfeld et al. 2001). Since
vA decreases with increasing heliocentric distance r outside
the corona, and since the proton outflow velocity varies only
weakly with r for r > 0.3 AU, the observed limitation of the
alpha particle drift reflects a continuous deceleration of the
alpha particles. Micro-instabilities driven by the relative drift
are believed to be responsible for this deceleration (Isenberg &
Hollweg 1983; Marsch & Livi 1987; Gomberoff et al. 1996;
Gary et al. 2000b, 2003; Goldstein et al. 2000; Verscharen &
Chandran 2013).

We define the quantity

βj ≡ 8πnjkBTj

B2
, (2)

where nj and Tj are the number density and temperature of
species j. Spacecraft measurements show a large variety and (on

3 Also at Department of Physics, University of New Hampshire, Durham, NH
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average) a radial increase of βj with increasing r over the range
0.3 AU < r < 1 AU probed by the Helios satellites (Marsch
et al. 1982a, 1982b). In the fast solar wind, the typical value of
βp at 1 AU is of order unity, and the mean free path for particle
collisions is of the same order as the distance from the Sun,
which indicates that kinetic effects play an important role and
should be included in a complete description of the plasma.

Additional important factors for the behavior of waves and
instabilities in plasmas are the temperature ratios between the
species. The measured temperatures at 1 AU indicate that in
slow-solar-wind streams collisional relaxation can lead to equal
proton and alpha temperatures (Kasper et al. 2008). In the less
collisional fast wind, the distribution of Tα/Tp values peaks at
Tα/Tp ≈ 4, consistent with roughly equal thermal speeds of pro-
tons and alpha particles (Kasper et al. 2008; Marsch et al. 1982a,
1982b). Possible explanations for the enhanced alpha-particle
temperatures include cyclotron heating (von Steiger et al. 1995;
Neugebauer et al. 1996; Reisenfeld et al. 2001; Marsch et al.
1982c; Isenberg & Hollweg 1983), stochastic heating (Chandran
2010), and transit-time damping (Lynn et al. 2012).

The properties of plasma waves in a high-βp environment can
significantly differ from their properties in the cold-plasma limit
(Gary 1986). The dispersion relations of these waves change,
and resonant damping plays a more and more important role with
increasing temperature. The thresholds of beam instabilities also
depend on βj , and some instabilities are only active in a small
range of βj values (e.g., Montgomery et al. 1976; Li & Habbal
2000). The previous literature on ion drifts in the solar wind
describes two Alfvénic instabilities that propagate obliquely to
the background magnetic field and operate at low βp and βα

with threshold speeds less than 1.3vA only at βα < 0.1. Within
this literature, the only instability that acts at higher βp and
βα is the magnetosonic instability. Its growth rate is highest at
parallel propagation. However, unless temperature anisotropies
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with T⊥ < T‖ are present, it requires drift speeds �1.2vA to
become unstable (Gary et al. 2000a). In contrast, the observed
differential flows are generally smaller than vA in both the slow
wind and fast wind (Marsch et al. 1982a; Reisenfeld et al. 2001),
which indicates that the parallel magnetosonic instability is not
excited in solar-wind streams near 1 AU in which T⊥α � T‖α .

An instability of the parallel-propagating Alfvén/ion-
cyclotron wave in the presence of a hot beam has been discussed
in the literature before. Gary (1993) describes this ion/ion left-
hand resonant instability in his Figures 8.1 and 8.3 for a plasma
consisting of one ion species. In this paper, we present new re-
sults on a parallel-propagating Alfvénic drift instability that is
excited by drifting alpha particles with T⊥α = T‖α . The thresh-
old of this drift speed is between 0.7vA and 0.9vA, depending
on the values of βα and βp. We describe the local effects of
this instability on the alpha particles and discuss the waves that
are generated once the instability threshold is exceeded. We do
not undertake the more ambitious task of developing a com-
plete picture of the alpha-particle evolution in the solar wind,
which would require us to include additional effects such as
the interplay of different instabilities, collisions, and local heat-
ing. In Section 2, we discuss the dispersion relation of parallel
Alfvén/ion-cyclotron waves in the cold-plasma approximation.
We also discuss the hot-plasma dispersion relation and a nu-
merical code that we have developed to solve this dispersion
relation. In Section 3 we review some general properties of res-
onant wave–particle interactions, and in Section 4 we derive an
approximate analytic expression for the instability threshold. In
Section 5, we use the full dispersion relation of the hot plasma
to test these analytical results and quantify the growth rate of
this instability. While we principally focus on isotropic temper-
ature, we also consider the effects of temperature anisotropies
in Section 5. We describe the possible quasilinear evolution of
the alpha-particle distribution function in the presence of this
instability in Section 6. In Section 7 we show that the theoretical
instability threshold provides an approximate upper bound to the
Uα values in solar-wind streams with T⊥α � T‖α as measured
by the Wind spacecraft at 1 AU. In Section 8 we summarize
our results and discuss the relevance of this instability to the
evolution of alpha particles in the fast solar wind.

2. THE COLD-PLASMA AND HOT-PLASMA
DISPERSION RELATIONS

We limit ourselves to wavevectors that are parallel to the
background magnetic field B0 = B0êz. In the cold-plasma
approximation, the dispersion relation for the Alfvén/ion-
cyclotron-wave solutions is (Gomberoff & Elgueta 1991)

k2
‖v

2
A

Ωp
= ω2

Ωp − ω
+

4η(ω − k‖Uα)2

Ωp − 2ω + 2k‖Uα

, (3)

where k‖ is the field-parallel component of the wavevector,
ω = ωr + iγ is the complex wave frequency, Ωp ≡ qpB0/mpc
is the proton cyclotron frequency, η ≡ nα/np is the fractional
alpha-particle density, and Uα is the drift speed of the alpha
particles with respect to the protons. Equation (3) is based on
the zero-space-charge and zero-current conditions,

ne = 1

e

∑
i

niqi, (4)

Ue = 1

nee

∑
i

niqiUi, (5)

where the sum is taken over all ion species i, which in our
case means protons and alpha particles. Since we work in the
proton frame, Up = 0. Both ion species are associated with
an ion-cyclotron-wave branch in the solutions of the dispersion
relation. We will focus on the so called Alfvén/proton-cyclotron
(A/PC) branch only, which is the solution for which ωr → Ωp
as k‖ → +∞.

In the more general case of a hot plasma (i.e., a plasma with
nonzero temperature), the linear dispersion relation is based on
Maxwell’s equations along with the Vlasov equation,

∂fj

∂t
+ v · ∂fj

∂x
+

qj

mj

(
E +

1

c
v × B

)
· ∂fj

∂v
= 0 (6)

for the particle species j with charge qj and mass mj in an electric
field E and a magnetic field B (Stix 1992). The distribution
function fj is written as fj = f0j +δfj with a homogeneous, time-
independent background f0j and a small perturbation δfj . The
Vlasov and Maxwell’s equations are then linearized to describe
the evolution of δfj and the fluctuating electromagnetic fields.
We assume that each species’ background distribution function
can be approximated as a drifting bi-Maxwellian in cylindrical
coordinates in v-space:

f0j = nj

π3/2w2
⊥jw‖j

exp

(
− v2

⊥
w2

⊥j

−
(
v‖ − Uj

)2

w2
‖j

)
, (7)

where

w⊥j ≡
√

2kBT⊥j

mj

and w‖j ≡
√

2kBT‖j
mj

(8)

are the perpendicular and parallel thermal speeds, and v⊥ and v‖
are the components of v perpendicular and parallel to the back-
ground magnetic field B0 = B0êz. A long but straightforward
calculation (Chap. 10 from Stix 1992) eventually allows one to
calculate the dielectric tensor ε. The dispersion relation is then
given by

kc

ω
×

(
kc

ω
× Ek

)
+ εEk ≡ DEk = 0. (9)

To solve this dispersion relation numerically, we developed
a code named NHDS (New Hampshire Dispersion relation
Solver). The linearized Vlasov–Maxwell system is solved for ar-
bitrary directions of propagation with respect to the background
field by a secant method allowing for an arbitrary number of
particle species with given charge, mass, temperatures, temper-
ature anisotropies, densities, and drift speeds. NHDS evaluates
all calculations in double precision. For the general case when
the angle between k and B0 is nonzero, the code sums (over in-
dex n) the modified Bessel functions In(λj ) that occur in Equa-
tion (9) until In(λj ) < 10−50, where λj ≡ k2

⊥w2
⊥j /2Ω2

j . An
initial guess for k and ω must be provided as the starting point
of the secant calculation. This initial guess defines the mode that
is then tracked by the code as it scans through different values of
k. The electron density ne and electron drift speed Ue are again
adjusted according to the zero-space-charge and zero-current
conditions in Equations (4) and (5). NHDS solutions have been
benchmarked against the literature on micro-instabilities such as
the ion-cyclotron, firehose, mirror mode, ion–ion, and electron-
heat-flux instabilities (Gary 1993) and the known dispersion re-
lations of ion-cyclotron, whistler, lower-hybrid, ion-Bernstein,
and kinetic Alfvén waves.
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3. RESONANT WAVE–PARTICLE INTERACTIONS

In the limit of small wave amplitudes and small growth/
damping rates, the evolution of the distribution function is
described by quasilinear theory. Resonant particles undergo a
diffusion process in velocity space according to the equation

∂fj

∂t
= lim

V →∞

+∞∑
n=−∞

q2
j

8π2m2
j

∫
1

V v⊥
Ĝv⊥δ(ωkr − k‖v‖ − nΩj )

× ∣∣ψn,k

∣∣2
Ĝfjd

3k, (10)

where

Ĝ ≡
(

1 − k‖v‖
ωkr

)
∂

∂v⊥
+

k‖v⊥
ωkr

∂

∂v‖
(11)

and

ψn,k ≡ 1√
2

[
Ek,re

iφJn+1(σj ) + Ek,le
−iφJn−1(σj )

]
+

v‖
v⊥

EkzJn(σj ) (12)

(Kennel & Engelmann 1966; Marsch 2006). The Fourier-
transformed electric-field vector (Ekx, Eky, Ekz) is used to
define the quantities Ek,r ≡ (Ekx − iEky)/

√
2 and Ek,l ≡

(Ekx + iEky)/
√

2. The argument of the nth order Bessel function
Jn is defined as σj ≡ k⊥v⊥/Ωj , and the azimuthal angle of the
wavevector k is given by φ. The real part of frequencies that are
solutions of the dispersion relation at a given k is denoted ωkr.

In order to resonate with waves at a given frequency ωkr and
wavenumber k‖, particles have to fulfill the condition

ωkr = k‖v‖ + nΩj (13)

following from the delta function in Equation (10). It can be
shown from Equation (10) that alpha particles lose kinetic
energy from resonant wave–particle interactions, thereby acting
to drive an instability,4 if and only if

0 < ωkr/k‖ < Uα, (14)

assuming that fα(v) is isotropic about Uα êz. A proof of this
condition was given in the Appendix of Verscharen & Chandran
(2013). The requirement that the drift speed exceed the wave
phase velocity along the magnetic field also arises in the well-
studied cosmic-ray streaming instability, which is excited when
the average cosmic-ray drift velocity along B0 exceeds the
Alfvén speed (Kulsrud & Pearce 1969; Wentzel 1969). We
concentrate on the case in which T⊥ = T‖ since we want to
address the effect of the drift on the stability of the A/PC wave.
This drift instability can, however, be assisted or suppressed by
temperature anisotropies as we show in Section 5. Protons with
T⊥ = T‖ fulfilling the resonance condition will always gain
kinetic energy and, therefore, damp the wave. This is because
resonant interactions cause protons to diffuse in velocity space
from regions of high particle concentration toward regions of
low particle concentration, which means diffusing toward higher
energy when T⊥ = T‖.

4 For some wave modes, the effect of negative wave energy has to be taken
into account to treat the instability correctly. This does not apply to the parallel
Alfvénic instability discussed here. For details about negative-energy waves
and resonant drift instabilities, we refer to the treatment by Verscharen &
Chandran (2013).
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(A color version of this figure is available in the online journal.)

4. ANALYTIC INSTABILITY THRESHOLD FOR THE
PARALLEL ALFVÉNIC DRIFT INSTABILITY

In this section, we derive approximate analytic expressions
for both the minimum and maximum values of Uα needed for
the parallel Alfvénic instability. To simplify the analysis, we use
approximate versions of the dispersion relation (both the cold-
plasma dispersion relation and a non-dispersive approximation).
The errors introduced by these approximations are illustrated in
Figures 2 and 4.

We begin by determining the critical wavenumber kc and
frequency ωc at which the phase speed of the wave equals Uα .
By combining Equation (3) with the equation ω = kcUα , we
find that

kcvA

Ωp
= 1 − (Uα/vA)2

(Uα/vA)
. (15)

The frequency at k‖ = kc is simply ωc = kcUα . As discussed
in the previous section, ωkr/k‖ must be less than Uα in order
for a wave to be driven unstable by resonant interactions with
alpha particles when fα(v) is isotropic about Uα êz. In Figure 1,
we plot the cold-plasma dispersion relation, Equation (3), for
the parameters nα = 0.05np and Uα = 0.9vA. As this figure
illustrates, ωkr/k‖ is a monotonically decreasing function of k‖,
which is true in general for the A/PC wave. Because of this,
waves with k‖ > kc satisfy the requirement ωkr/k‖ < Uα .

We assume now that the distribution functions of the protons
and the alpha particles have a finite width Δv‖p and Δv‖α (defined
as positive-definite quantities) in the field-parallel direction
in velocity space due to their thermal motion. Therefore, the
resonance condition Equation (13) can be fulfilled in a range of
different particle velocities v‖ for both species. It is important
that the distribution function provides enough particles at the
speed v‖ in Equation (13) to drive an instability or to damp
the waves efficiently. We assume that this is the case provided
|v‖ − Uj | � 2w‖j . Therefore, we set

Δv‖j = 2w‖j (16)

for both protons and alphas.
We assume for concreteness that ωkr > 0. The A/PC

wave with k⊥ = 0 is purely left-handed in polarization with
Ekz = 0 and (since ωkr > 0) Ek,r = 0. Equation (12) then
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(A color version of this figure is available in the online journal.)

implies that the only relevant resonance is n = +1, because
Jn(0) = δn,0. Only protons that propagate in the −z-direction
can participate in the resonant interaction with the A/PC wave
since ωkr < Ωp for all k (Dusenbery & Hollweg 1981). These are
particles with velocities between v‖ = 0 and v‖ = −Δv‖p. The
associated proton damping becomes important for wavenumbers
and frequencies larger than the values kpd and ωpd that are
defined by

ωpd = −kpdΔv‖p + Ωp, (17)

where ωpd is the solution to the dispersion relation when
k‖ = kpd. The quantities ωpd and kpd are illustrated in Figure 1.

Because protons are the majority species, we assume that
resonant damping by protons at k‖ > kpd dominates over any
possible instability drive from the alpha particles. Thus, any
instabilities must satisfy k‖ < kpd. Since unstable modes must
satisfy both k‖ > kc and k‖ < kpd, a necessary condition for
instability is that kc < kpd. This condition places an upper
limit on Δv‖p, which can be obtained by setting kpd > kc from
Equations (15) and (17):

w‖p

vA
<

1

2

[
(Uα/vA)3

1 − (Uα/vA)2

]
. (18)

This relation is our first analytic condition for the presence of an
instability. This form is only valid for Uα < vA. For larger drift
speeds, all solutions of the dispersion relation have lower phase
speeds than Uα and fulfill the instability criterion ωkr/k‖ <
Uα . Equation (18) can also be interpreted as a lower limit
on Uα .

As a second condition for instability, an appreciable num-
ber of alpha particles must satisfy the resonance condition
Equation (13) at k‖ < kpd, so that alpha particles can drive
the instability in the range of wavenumbers where proton damp-
ing is weak. The minimum wavenumber kα at which thermal
alpha particles with |v‖ −Uα| � Δv‖α can satisfy Equation (13)
with n = +1 is given by the equation

ωα = kα

(
Uα − Δv‖α

)
+ Ωα, (19)

where ωα is the solution to the A/PC wave dispersion relation
when k‖ = kα . For a better understanding of these labels, we
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refer again to Figure 1. We approximate the dispersion relation
now by setting ωkr = k‖vA to solve Equations (17) with (19) for
kpd and kα . The condition kα < kpd then yields

w‖α >
Uα + w‖p

2
− 1

4
vA. (20)

This is the second condition for a parallel Alfvénic instability.
With the assumption of equal thermal speeds w‖p = w‖α = w‖
for the proton and alpha species, Equation (20) becomes

w‖ > Uα − 1

2
vA. (21)

Both Equations (18) and (20) can be plotted in the
w‖α/vA–Uα/vA plane to determine parameter ranges in which
the A/PC wave is unstable. This plot is shown in Figure 2 for
the case in which w‖α = w‖p.

We can also rewrite Equation (20) as a constraint on the
temperature ratio T‖α/T‖p. Combining Equation (20) with
Equation (16), we obtain

T‖α
T‖p

> 4

[
2Uα − vA

2Δv‖p
+

1

2

]2

. (22)

This condition is plotted in Figure 3. It shows that by increasing
the values of Δv‖p (i.e., higher parallel proton temperatures)
the minimum value of T‖α/T‖p necessary to excite the parallel
Alfvénic instability decreases.

5. NUMERICAL SOLUTIONS TO THE HOT-PLASMA
DISPERSION RELATION

Using the NHDS code (Section 2), we plot in Figure 2 con-
tours of constant maximum growth rate γm from the dispersion
relation of a hot plasma consisting of protons, electrons, and al-
pha particles with η = 0.05, Tα = 4Tp = 4Te, and vA/c = 10−4.
All species are assumed to satisfy T⊥ = T‖. The γm = 10−4Ωp
contour provides a rough match to our analytic approximation
of the instability threshold. This suggests that the physical in-
terpretation of this instability set forth in the previous section is
approximately valid.
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Table 1
Fit Parameters and Limits of the Parallel Alfvénic Instability with Isotropic Temperatures and η = 0.05

γm/Ωp A C � a b Umin/vA Umed/vA Umax/vA

1 × 10−4 −2.0 1.3 −6.59 0.66 0.22 0.67 0.90 2.8
5 × 10−4 1.0 1.45 −6.79 0.66 0.61 0.68 1.09 2.8
1 × 10−3 2.0 2.55 −6.52 0.57 1.05 0.74 1.17 2.7
2 × 10−3 5.0 5.45 −7.39 0.47 1.65 0.87 1.43 2.6

Note. The coefficients for Equations (24) and (25) are given depending on the maximum growth rate γm.
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In Figure 4, we illustrate some of the properties of this in-
stability using numerical solutions to the hot-plasma dispersion
relation with η = 0.05, βp = 3, Uα = 0.9vA, vA/c = 10−4,
and Tα = 4Tp = 4Te. The cold-plasma solution for ωkr and
the NHDS solution for ωkr agree well at low k‖. At higher k‖,
however, the cold-plasma solution overestimates the frequency
of the A/PC wave. In addition to the two dispersion relations,
resonance lines are plotted (red dashed lines) that represent the
cyclotron-resonance condition Equation (13) for n = +1. As in
Equations (17) and (19), these lines are calculated as

ωr = k‖v‖ + Ωj = k‖(Uj − 2w‖j ) + Ωj . (23)

The parallel speed of the resonant particles again consists of
a component due to the beam (only important for the alpha
particles) and a component due to the thermal width of the
particle distribution function. The line ωr = k‖Uα shows at
each wavenumber k‖ an upper limit for the frequency ωkr of an
unstable wave from the condition ωkr/k‖ < Uα . Figure 4 also
shows the linear growth rate γ of the A/PC wave calculated
by NHDS. As the figure shows, γ > 0 only for k‖ values
between 0.1Ωp/vA and 0.2Ωp/vA. The endpoints of this interval
correspond roughly to kα (and kc) and kpd, that is, to the
intersections of the alpha-particle and proton resonance lines
with the plot of the dispersion relation. At k‖ > kpd, the damping
by the protons clearly dominates.

The contours of constant γm in Figure 2 obtained from the
NHDS code can be fit in w‖α–Uα space. For the nearly vertical
portions of these contours at Uα � vA, we use a fitting function
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Figure 5. The dependence of the maximum growth rate for the parallel
Alfvénic drift instability on alpha-particle temperature anisotropies. Different
combinations of w‖α/vA and Uα/vA are shown. In cases with T⊥α > T‖α , the
growth rate is higher than in the isotropic case or at T⊥α < T‖α . This effect is
stronger at higher w‖α/vA.

(A color version of this figure is available in the online journal.)

of the form
w‖α
vA

=
[
A + C

(
Uα

vA

)�]1/2

. (24)

The values of the fitting constants for each contour are given
in Table 1, along with the range of Uα values for which the fit
applies (defined as the interval between Umin and Umed). We fit
the shallow-sloped portions of the contours at larger Uα with
the function

w‖α
vA

= a
Uα

vA
+ b. (25)

The best-fit values of a and b are given in Table 1, along with
the range of Uα values, for which the fit is valid (defined as the
interval between Umed and Umax).

High-βα plasmas are very sensitive to instabilities driven
by temperature anisotropies (Gary & Lee 1994; Samsonov
et al. 2001; Hellinger et al. 2006; Kasper et al. 2008; Bale
et al. 2009; Maruca et al. 2012). Therefore, we calculate the
growth rate of the parallel Alfvénic beam instability for different
temperature anisotropies of the alpha particles with NHDS. The
result of this calculation is shown in Figure 5. A small value of
the temperature anisotropy can modify the growth rate of the
parallel Alfvénic drift instability significantly. The growth rate
increases with T⊥α/T‖α . This effect is stronger at higher w‖α/vA
as expected from the behavior of the ion-cyclotron instability
without drift (Scarf & Fredricks 1968). If T⊥α/T‖α > 1, the
alpha particles can reach the instability thresholds at lower drift
speeds than seen in Figure 2. We note that proton temperature
anisotropy can also modify the thresholds of drift instabilities
(Araneda et al. 2002; Gary et al. 2003), but we do not investigate
this effect quantitatively in this paper.
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Figure 6. Particle densities in velocity space. The distribution functions for
protons (p, blue) and alpha particles (α, red contours) are shown for a high-beta
plasma with relative drifts among these species. The solid circles and the red
arrow show diffusion directions of the alpha particles. The blue arrow shows
the diffusion direction of damping protons.

(A color version of this figure is available in the online journal.)

6. QUASILINEAR EVOLUTION OF THE
ALPHA-PARTICLE DISTRIBUTION FUNCTION

In this section we consider how the alpha particles evolve
during resonant interactions with parallel Alfvénic drift instabil-
ities. It follows from Equation (10) that resonant wave–particle
interactions cause particles to diffuse in velocity space from re-
gions of large particle concentration toward regions of smaller
particle concentration. When particles interact with waves at a
single k‖ and ωkr, the direction of the diffusive particle flux is
constrained to be tangent to semicircles centered on the parallel
phase velocity in the v⊥–v‖ plane (Kennel & Engelmann 1966):

v2
⊥ +

(
v‖ − ωkr

k‖

)2

= constant. (26)

These semicircles correspond to curves of constant kinetic
energy in the frame moving at velocity (ωkr/k‖)êz. When waves
are present only at a single k and ωkr, resonant particles can
only diffuse a tiny distance in v‖ before falling out of resonance.
However, when a spectrum of waves is present, particles can
undergo velocity-space diffusion over a broader interval of v‖.

In Figure 6 we plot the phase space density of protons and
alpha particles for the case in which Uα ∼ w‖α ∼ w⊥α ∼
w‖p ∼ w⊥p. As illustrated in Figures 1 and 4, the alpha particles
that resonate with the parallel Alfvénic drift instability typically
satisfy v‖ < 0 and thus reside on the left side of Figure 6. When
these particles diffuse from interactions with instabilities at
some k and ωkr, their diffusive flux is parallel to the semicircular
contours centered on the point (vph, 0), where vph ≡ ωkr/k‖.
Because they diffuse from high particle concentration to low
particle concentration, they migrate in the direction of the red
arrow, toward smaller v⊥. This diffusion thus acts to “pinch”
the alpha-particle distribution at v‖ < 0, which leads to the
appearance of a parallel-beam-like feature (narrow in v⊥ but
broader in v‖) propagating in the −z direction. This type of
feature has been found in measurements of the alpha-particle
distribution function in the solar wind at high βα (see for
example Figure 4 in Astudillo et al. 1996).

7. COMPARISON WITH OBSERVATIONS

To investigate the possible relevance of the parallel Alfvénic
instability to alpha particles in the solar wind, we consider
measurements of alpha-particle differential flow from the Wind
spacecraft at 1 AU. We use ion measurements from Wind’s two
Faraday cups, which are part of the spacecraft’s Solar Wind
Experiment (Ogilvie et al. 1995). The cups together deliver one
ion spectrum about every 90 s. Several versions of automated

Eq. (18)
γm = 1 x 10-4

 0  0.5  1  1.5  2

Uα / vA

 0.5
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w
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 / 
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Figure 7. Comparison of theoretical instability thresholds and measurements
from the Wind spacecraft. The color coding represents the number of spectra
per bin of the measurement. We only show observations in the parameter range
relevant to the parallel Alfvénic instability with Ac � 0.3, 0.9 � T⊥α/T‖α �
1.1, and 3.5 � T‖α/T‖p � 4.5. The black solid line shows the analytical
threshold from Equation (18) for w‖p = w‖α , and the orange line shows an
isocontour of constant maximum growth rate obtained from the NHDS code for
isotropic alpha and proton temperatures.

(A color version of this figure is available in the online journal.)

code have been developed for deriving values for the bulk
parameters (i.e., density, velocity, and temperature) of protons
and alpha particles from each spectrum. For this study, we use
the output from the Maruca (2012) code, which incorporates
3 s magnetic field measurements from Wind’s Magnetic Field
Investigation (Lepping et al. 1995) into its nonlinear fitting of
each ion spectrum in order to separate the perpendicular and
parallel components of velocity and temperature. This code has
processed all 4.8×106 Wind ion spectra from late-1994 (i.e., the
spacecraft’s launch) through mid-2010. After removing spectra
with poor signal, with a high collisional age (Kasper et al. 2008),
and/or from near or within the Earth’s bow shock, 9.3 × 105

spectra remain (Maruca 2012). We further reduce this data set
to the 3.0 × 104 spectra that also satisfy 0.9 � T⊥α/T‖α � 1.1
and 3.5 � T‖α/T‖p � 4.5. Figure 7 shows the distribution of
data in the same plane that we use in Figure 2. We also plot in
Figure 7 the instability threshold. The data distribution reaches
the instability threshold in the range 0.7 � w‖α/vA � 1.5.
At lower thermal speeds, other instabilities such as the parallel
magnetosonic instability have lower thresholds.

It is not entirely clear what to conclude from the fact
that the instability threshold approximately bounds the data
distribution in Figure 7. This figure suggests that the parallel
Alfvénic instability acts as a deceleration mechanism that
limits Uα to values below the instability threshold. However,
a problem with this scenario is that, as discussed in Section 6,
the parallel Alfvénic instability resonantly interacts only with
alpha particles with v‖ < 0 in the proton rest frame. Although
the “pinching” effect described in Section 6 leads to some
reduction of Uα , the bulk of the alpha particles, which satisfy
v‖ > 0, are unaffected by the instability. Thus, although the
parallel Alfvénic instability may contribute to alpha-particle
deceleration, it is unable on its own to explain how alpha
particles decelerate between heliocentric distances of 0.3 AU
and 1 AU.

If the solar wind were to expand according to the double-
adiabatic prediction (Chew et al. 1956), then alpha particles
would satisfy T⊥α � T‖α at 1 AU. Under this condition, the
parallel Alfvénic instability is not unstable at the observed
values of Uα . However, spacecraft measurements show that
there are solar-wind streams at 1 AU with T⊥α � T‖α . In these
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cases, the alpha particles have undergone perpendicular heating,
perhaps from the dissipation of solar-wind turbulence, and/or
the excitation of magnetosonic instabilities, whose nonlinear
evolution (unlike that of the parallel Alfvénic instability) leads
to an increase in T⊥α/T‖α (Gary et al. 2000a). Thus, although
Figure 7 shows that the parallel Alfvénic instability occurs in the
solar wind, this instability does not offer a complete explanation
of the radial evolution of alpha-particle properties in the solar
wind.

8. DISCUSSION AND CONCLUSIONS

Using results from quasilinear theory, we derive approximate
analytic expressions describing the conditions under which
the parallel-propagating A/PC wave becomes unstable in the
presence of alpha particles drifting parallel to the magnetic
field at speed Uα . We assume that T⊥α = T‖α . To obtain these
expressions, we consider the competing effects of the instability
drive provided by the alpha particles and the cyclotron damping
caused by thermal protons. We then find that there are two
conditions needed for this instability to arise. First, Uα must
be sufficiently large that there are waves with ωkr/k‖ < Uα at
wavenumbers that are sufficiently small that proton cyclotron
damping can be neglected. Second, the alpha-particle thermal
speed must be sufficiently large that the alpha particles can
resonate with the wave at wavenumbers that are too small
for thermal-proton cyclotron damping to occur. These two
conditions lead to Equations (18) and (20), respectively. Both
resonant alpha particles and resonant protons can only fulfill
these conditions if they have v‖ < 0 in the proton frame. A
comparison with solutions from the full dispersion relation
of a hot plasma in Section 5 shows rough agreement with
our analytical expressions for the instability thresholds in
Equations (18) and (20).

In the fast solar wind, T‖α is typically �4T‖p and η � 0.05
(Bame et al. 1977; Kasper et al. 2008). Under these conditions,
we find that the minimum Uα thresholds for the parallel
Alfvénic drift instability are in the range of 0.7vA to 0.9vA
for 1 � βp � 12. These Uα thresholds are comparable to
the limits on Uα that are seen in the solar wind, suggesting
that this instability may be important for limiting alpha-particle
differential flow in the solar wind when βp � 1.

Although we have focused on the case in which T⊥ = T‖ for
all particle species, we find that the growth rate of the parallel
Alfvénic drift instability increases with increasing T⊥α/T‖α and
that the parallel Alfvénic instability is more strongly affected by
temperature anisotropy when β‖α is higher. These trends are also
seen in the case of the ion-cyclotron instability driven by alpha-
particle temperature anisotropy in the absence of differential
flow (Maruca et al. 2012).

The parallel Alfvénic instability alone does not offer a
full description of the alpha-particle evolution in the solar
wind. Local perpendicular heating and additional instabilities
are necessary in order to explain the properties of the alpha
particles. Measurements by the Wind spacecraft presented in
Section 7, however, indicate that the thresholds of the parallel
Alfvénic instability are reached in some solar wind streams
with w‖α/vA � 0.7 at 1 AU. In this range and for T⊥α = T‖α ,
the discussed instability has the lowest threshold of the known
linear instabilities. We do not treat the mechanisms that lead to
the observed conditions in detail. Nevertheless, in these solar-
wind streams, the parallel Alfvénic instability contributes to
the alpha-particle evolution and generates parallel-propagating
A/PC waves. At lower w‖α/vA, oblique Alfvén/ion-cyclotron

instabilities are likely able to regulate the drift efficiently (Gary
et al. 2000b; Li & Habbal 2000; Verscharen & Chandran 2013).

In closing, we note that the parallel Alfvénic drift instability
is similar to the cosmic-ray streaming instability (Kulsrud &
Pearce 1969; Wentzel 1969). Both instabilities require that
the drifting ion population have an average velocity along B0
that exceeds ωkr/k‖. The principal differences between the
two instabilities are that the parallel Alfveńic drift instability
involves thermal particles, dispersive waves, and a competition
between the instability drive of the streaming ion population and
the resonant cyclotron damping by thermal protons. Because
of these differences, the instability criteria are different in the
two cases. Another similar instability is the ion/ion left-hand
resonant instability (Gary 1993)—also known as the ion–ion
L-mode instability (Treumann & Baumjohann 1997)—in which
the parallel Alfvén/ion-cyclotron wave is driven unstable by
resonant particles at v‖ < 0 when a hot beam is present with
a bulk speed Ub > 0 on the tail of the main-ion species. The
instability that we investigate differs from the ion–ion L-mode
instability in that we include a second ion species. Also, our
analysis goes beyond previous investigations of the ion–ion
L-mode instability by examining the competition between the
destabilizing effects of the beam and the resonant cyclotron
damping by the core particles, and by calculating analytical and
numerical instability thresholds.
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