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Abstract: Electrostatic analysers measure the flux of plasma particles in velocity space and
determine their velocity distribution function. There are occasions when science objectives require
high time-resolution measurements, and the instrument operates in short measurement cycles,
sampling only a portion of the velocity distribution function. One such high-resolution measurement
strategy consists of sampling the two-dimensional pitch-angle distributions of the plasma particles,
which describes the velocities of the particles with respect to the local magnetic field direction. Here,
we investigate the accuracy of plasma bulk parameters from such high-resolution measurements.
We simulate electron observations from the Solar Wind Analyser’s (SWA) Electron Analyser System
(EAS) on board Solar Orbiter. We show that fitting analysis of the synthetic datasets determines the
plasma temperature and kappa index of the distribution within 10% of their actual values, even at
large heliocentric distances where the expected solar wind flux is very low. Interestingly, we show
that although measurement points with zero counts are not statistically significant, they provide
information about the particle distribution function which becomes important when the particle flux
is low. We also examine the convergence of the fitting algorithm for expected plasma conditions and
discuss the sources of statistical and systematic uncertainties.
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1. Introduction

The environment of interplanetary space is filled with a very low-density plasma,
primarily consisting of electrons and protons with a small component of heavier ions. Typically,
investigations of this plasma measure the flux of particles in energy and angle to determine the velocity
distribution function (VDF) of different particle species. The VDF indicates how energy is distributed
between particles of the same type, and can be analysed accordingly to provide bulk properties of the
plasma such as density, velocity, and temperature. The accuracy of the derived plasma bulk parameters
depends on the accuracy of the measurements and on the techniques we use to analyse the data.

The velocities of space plasma particles often follow kappa distribution functions (see, e.g., in [1–6]
and references therein). The kappa index labels and governs these distributions and it is another
fundamental parameter that describes the thermodynamic state of the plasma. Theoretical works
derived the kappa distribution from the foundations of Tsalis non-extensive statistical mechanics (see,
e.g., in [7–9]). In addition, a large number of studies have determined kappa distribution functions in
space plasma environments, such as the solar wind (see, e.g., in [10–15]), planetary magnetospheres (see,
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e.g., in [16–18]), cometary electrons (see, e.g., in [19]), and the outer heliosphere and inner heliosheath
(see, e.g., in [20–26]).

The high energy “tails” that characterize kappa distributions are associated with relatively low
particle fluxes, and are thus not always clearly resolved in plasma measurements. In these cases,
the analysis becomes challenging, because a smaller number of particles are measured leading to
a higher statistical uncertainty. Nevertheless, the accurate description of the plasma requires the
determination of the kappa index [2,3,27]. Therefore, it is essential to obtain high-quality measurements
that resolve the high-energy tails of the plasma distribution functions, and to use the appropriate
analysis methods to determine the plasma bulk parameters from the observations.

Typical electrostatic analysers measure the flux of plasma particles over a finite range of energy
and flow direction, at a given time. An almost complete scan through energies and directions is
achieved by changing the voltages of the instrument components in a consecutive order. Space plasma
is permeated by magnetic field which provides an important direction for anisotropy in the plasma.
Charged particles gyrate around the magnetic field and particles can move relative to the magnetic field
due to drift motions. The magnetic field is also an important direction for the propagation of plasma
waves, wave-particle interactions, damping, heating and the generation of waves via instabilities
from free-energy in the particle VDFs. Thus, in some operation modes, the measurement cycle of a
plasma instrument is modified, and the instrument samples the particle energies in a limited range
of directions only, providing the measurements to construct the two-dimensional (2D) pitch-angle
distribution function of the plasma. Although the reduction by one dimension allows faster scans
which provide high time-resolution measurements, it reduces the statistical significance of the data
because the distribution is resolved in fewer points in velocity space.

For example, the Plasma Electron and Current Experiment (PEACE) instrument [28] on board
Cluster is designed to measure the plasma electrons within the Earth’s magnetosphere. PEACE consists
of two top-hat electrostatic analysers, with look directions onto a plane perpendicular to the spin
axis of the spacecraft. During the nominal operation mode, PEACE constructs the three dimensional
(3D) VDF of the plasma electrons over the energy range from 0.59 eV to 26.4 keV. The 3D VDF can be
constructed over half a spin period of the spacecraft, which corresponds to 2 seconds. In cases when
the magnetic field direction lies within the instrument’s azimuthal field of view, we can construct the
pitch angle distribution of the plasma electrons over a time period of just 62.5 milliseconds—the time it
takes for the instrument to scan in energy.

As another example, the Solar Wind Analyser’s Electron Analyser System (SWA-EAS [29] (The
software used in this study is available for download at www.github.com/gnicolaou85/Elfit)) on
board Solar Orbiter, will measure the solar wind electrons in the energy range from 1 eV to 5 keV,
within heliocentric distances from ~0.3 to 1 au. In its nominal operation mode, SWA-EAS completes an
energy-direction scan constructing the entire 3D VDFs of the plasma electrons in ~1 s. In burst-mode,
the instrument will measure the 2D pitch-angle distribution of the electrons over a period of 0.125 s,
using a single deflection state. The accuracy of the derived plasma bulk parameters is a function of the
electron flux, which depends on the solar wind density, and speed. Since Solar Orbiter will observe
plasma within a wide range of heliocentric distances and heliographic latitudes, we expect a wide
range of plasma fluxes to be sampled.

In this study, we investigate the accuracy of our derivation of the plasma bulk parameters,
such as the plasma density, temperature tensor and kappa index, from the analysis of the expected 2D
pitch-angle measurements by SWA-EAS on board Solar Orbiter. We model the expected measurements
of solar wind plasma electrons, considering the instrument’s ideal response, based on the initial
instrument calibration. We then fit the synthetic dataset with an analytical model in order to derive
the bulk parameters of the electrons. We compare the derived parameters with those from our input.
Through this comparison, we quantify the accuracy of the derived parameters as a function of the
recorded counts. In Section 2, we describe in detail our instrument model and how we model and
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analyse the expected observations. In Section 3, we present our results, which we discuss in detail in
Section 4. Section 5 summarises our conclusions.

2. Methods

2.1. Instrument Model

SWA-EAS consists of a pair of top-hat electrostatic analyser heads, orthogonally mounted on the
spacecraft boom. Each analyser head includes an aperture deflector system and a position-sensitive
multichannel plate (MCP) detector. The instrument measures the plasma electron fluxes as a function
of kinetic energy and angle of incidence from which the electron VDF is calculated. SWA-EAS scans
the energy of the electrons by electrostatic selection in 64 steps, spread exponentially over the range
between 1 eV to 5 keV. Each specific kinetic energy step E has a width of ∆E/E ~ 12.5%. In the nominal
operation mode, the aperture deflector system of each analyser head uses voltages applied to plates at
the aperture entrance to deflect incoming electrons and scans through the elevation direction of the
plasma particles, defined as the complement of the angle within the particle velocity vector and the
z-axis perpendicular to the top-hat aperture plane (left panel of Figure 1). Each of the two SWA-EAS
analyser heads measure specific elevation directions Θ within the range from −45◦ to +45◦ in 16
uniformly spaced electrostatic steps. We model an ideal response in which each Θ is measured with a
resolution of ∆Θ = 6◦. The azimuth direction is the angle within the projection of the velocity vector
on the top-hat plane (x-y plane) and the x-axis (right panel of Figure 1). Each SWA-EAS analyser head
resolves 32 discrete azimuth directions Φ covering the full range from 0◦ to 360◦ by 32 azimuth sectors
mounted on the MCP. Each azimuth direction Φ has a resolution of ∆Φ = 11.25◦. Combining two of
the analyser units offset by 90◦ allows the full sky to be measured. Thus, one analyser can always

see the direction towards the magnetic field vector
→

B . In burst-mode operations, the analyser head

that can see
→

B performs two consecutive energy scans; one with the aperture deflectors set to Θ = θB,
followed by a scan with the deflectors set to Θ = −θB, where θB is the elevation angle of the magnetic
field vector, which has been recorded by the magnetometer on board Solar Orbiter [30] just before the
EAS scan. Thus, the flux of electrons will be measured in two cones, one with an edge aligned along

and one anti-parallel with
→

B . From these measurements a pitch-angle distribution can be recovered.
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Figure 1. Schematic of a Solar Wind Analyser’s Electron Analyser System (SWA-EAS) top-hat analyser
head and its angular field of view. (Left) The elevation angle is defined as the complement of the angle
between the particle velocity vector and the z-axis, perpendicular to the top-hat plane. The elevation
angle of the electrons is resolved in 16 electrostatic uniform steps. (Right) The azimuth angle is the
angle within the projection of the velocity vector on the top-hat plane and the x-axis. Both SWA-EAS
analyser heads resolve the azimuth direction on MCP detectors using 32 sectors.
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2.2. Synthetic Dataset

We use the well-established forward-modelling technique (see, e.g., in [31–39]) to simulate the
expected SWA-EAS observations in the solar wind. We focus on the characterization of supra-thermal
electrons, which we consider more challenging due to the high energy tails of their VDFs. We model
solar wind electrons with their velocities following the bi-kappa distribution function (see, e.g., in [3–6])

f (
→
u) =

n√
T‖T⊥

[
me

2π(κ− 3/2)kB

]3/2 Γ(κ+ 1)
Γ(κ− 1/2)

1 + me(u‖ − u0,‖)
2

2kB(κ− 3/2)T‖
+

me(
→
u⊥ −

→
u0,⊥)

2

2kB(κ− 3/2)T⊥


−κ−1

, (1)

where n is the electron number density, u‖,
→
u⊥ are the particle velocity parallel and perpendicular to

the magnetic field respectively and u0,‖ and
→
u0,⊥ are the corresponding bulk velocities. T‖, and T⊥ are

the parallel and the perpendicular temperature, respectively, and κ is the kappa index. Finally, Γ is the
gamma function, kB is the Boltzmann constant and me is the electron mass.

We consider a simple set-up with
→

B in the top-hat plane of an individual SWA-EAS analyser head
(magnetic field elevation angle θB = 0◦) and the analyser head performing a single scan through kinetic
energy E and azimuth Φ, for elevation Θ = θB = 0◦, with acquisition time ∆τ. The instrument records
an expected number of counts,

Cexp(E, Θ = θB = 0, Φ) =
2

me2 G f (E, Θ = θB, Φ)E2∆τ, (2)

where
G = Aeff

∆E
E

∆Θ∆Φ, (3)

is the geometric factor of the instrument and Aeff is the effective area, which is a function of the
instrument’s aperture and the detector’s efficiency. For this study, we assume a constant Aeff which
results in a constant G, although in reality, both could be functions of energy, elevation and azimuth.
For further simplification, we only consider cases in which the bulk velocity vector points towards the
x-axis, so that the elevation and the azimuth angle of the bulk velocity vector θu,0 = ϕu,0 = 0◦. We also
set the azimuth angle of the magnetic field to ϕB = 45◦. We note that in this specific set-up, the bulk

speed components have the same magnitude
∣∣∣∣→u0,‖

∣∣∣∣ = ∣∣∣∣→u0,⊥

∣∣∣∣, and the azimuth sectors of the instrument
measure the pitch-angles of the particles. We assume that the registered counts C follow the Poisson
distribution:

P(C) = e−Cexp
Cexp

C

C!
. (4)

In Figure 2, we show two examples of the synthetic datasets, based on electron plasma densities
of n = 5 cm−3 (left panel), and n = 50 cm−3 (right panel). For both examples, the bulk velocity of
magnitude u0 = 500 kms−1 points along the x-axis, and we set κ = 3, T‖ = 10 eV, and T⊥ = 20 eV.

In our approach we neglect effects related to the spacecraft potential. In reality, the spacecraft floats
at a potential caused by interaction with the space environment and depending on the composition
of materials that cover the surface of the spacecraft. This potential can be of order 10 V or more.
Furthermore, UV photons striking the spacecraft produce photoelectrons that form a cloud around
the spacecraft. Thus, the incoming solar wind electron population can be accelerated by a few eV
and obscured by a high-density population of electrons at all energies below the spacecraft potential.
Furthermore, it is possible for the VDF of the electrons to have an irregular shape in 3D. We ignore
these effects here as we are interested in the high-energy tail of the electron distribution which should
not be affected by these phenomena, and we assume gyrotropy, i.e., that the VDF is symmetrical in
rotation around the magnetic field direction.



Entropy 2020, 22, 103 5 of 14Entropy 2020, 21, x 5 of 15 

 

 
Figure 2. Modelled counts as a function energy and azimuth direction on the analyser’s head frame 
for (left) plasma density n = 5 cm−3 and (right) n = 50 cm−3. For both examples, the magnetic field vector 
(magenta) is in the top-hat plane (Θ = θB = 0°) in azimuth direction Φ = 45°. The bulk flow of the 
electrons u0 = 500 kms−1 along the x-axis (Θ = Φ = 0°). The parallel temperature T  = 10 eV, the 

perpendicular temperature T⊥  = 20 eV, and the kappa index κ = 3. 

We derive the plasma properties by fitting our analytical model of the expected counts in 

Equation (2) to the observations. During the actual operations of SWA-EAS, B


 will be determined 
from Solar Orbiter’s magnetometer instrument [30]. Therefore, in our fitting analysis, the parallel and 
perpendicular directions are known parameters. Moreover, we reduce the unknown parameters of 
the fitted model by obtaining the plasma bulk velocity vector from proton measurements by the 
Proton Alpha Sensor (SWA-PAS [29]) on board the same spacecraft. This approach assumes that 
protons and electrons have the same bulk velocity, which is generally true for plasma with zero net 
charge and no significant drifts among the ion species. We note, however, that a more sophisticated 
approach could leave the electron bulk velocity as a free parameter to be derived by the fitting 
analysis. We then use a chi-squared minimization algorithm which defines the optimal combination 
of the undetermined plasma parameters (n, κ, T , and T⊥ ) that minimize the chi-squared value 

2

exp,2

1

( , , ,T )1 N
i i

i i

C C n T
N R

κ
χ

σ
⊥

=

 ′ ′′ ′−
 =

−   
  , (5)

where N is the total number of data-points we consider for fitting, R is the number of the model’s free 
parameters, and σi is the standard deviation of each count Ci. The model we fit to the observations is a 

function of n, κ, T , and T⊥ , so R = 4. In plasma applications, we typically use i iCσ = , as within a 
complete scan, we obtain only one measurement for each specific point in velocity space, and we 
assume that it represents the average value and the variance of the expected number of particles. For 
each measurement sample, we perform two fittings; one which excludes all points with Ci = 0, and one 
which includes all points with Ci = 0 in the analysis. We note that, in the second type of fitting, we assign 
an uncertainty of σi = 1 to each Ci = 0 measurement (see, e.g., in [40]). In Figure 3, we show an example 
of our synthetic dataset and the corresponding model fitted to it.  

Figure 2. Modelled counts as a function energy and azimuth direction on the analyser’s head frame
for (left) plasma density n = 5 cm−3 and (right) n = 50 cm−3. For both examples, the magnetic field
vector (magenta) is in the top-hat plane (Θ = θB = 0◦) in azimuth direction Φ = 45◦. The bulk flow
of the electrons u0 = 500 kms−1 along the x-axis (Θ = Φ = 0◦). The parallel temperature T‖ = 10 eV,
the perpendicular temperature T⊥ = 20 eV, and the kappa index κ = 3.

We derive the plasma properties by fitting our analytical model of the expected counts in Equation

(2) to the observations. During the actual operations of SWA-EAS,
→

B will be determined from
Solar Orbiter’s magnetometer instrument [30]. Therefore, in our fitting analysis, the parallel and
perpendicular directions are known parameters. Moreover, we reduce the unknown parameters of the
fitted model by obtaining the plasma bulk velocity vector from proton measurements by the Proton
Alpha Sensor (SWA-PAS [29]) on board the same spacecraft. This approach assumes that protons and
electrons have the same bulk velocity, which is generally true for plasma with zero net charge and no
significant drifts among the ion species. We note, however, that a more sophisticated approach could
leave the electron bulk velocity as a free parameter to be derived by the fitting analysis. We then use
a chi-squared minimization algorithm which defines the optimal combination of the undetermined
plasma parameters (n, κ, T‖, and T⊥) that minimize the chi-squared value

χ2 =
1

N −R

N∑
i=1

Ci −Cexp,i(n′,κ′, T′
‖
, T′
⊥
)

σi

2

, (5)

where N is the total number of data-points we consider for fitting, R is the number of the model’s free
parameters, and σi is the standard deviation of each count Ci. The model we fit to the observations is a
function of n, κ, T‖, and T⊥, so R = 4. In plasma applications, we typically use σi =

√
Ci, as within

a complete scan, we obtain only one measurement for each specific point in velocity space, and we
assume that it represents the average value and the variance of the expected number of particles.
For each measurement sample, we perform two fittings; one which excludes all points with Ci = 0,
and one which includes all points with Ci = 0 in the analysis. We note that, in the second type of fitting,
we assign an uncertainty of σi = 1 to each Ci = 0 measurement (see, e.g., in [40]). In Figure 3, we show
an example of our synthetic dataset and the corresponding model fitted to it.
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Figure 3. (Left) Modelled counts as a function of energy and azimuth direction (instrument frame),
using n = 20 cm−3, u0 = 500 kms−1 towards the x-axis (Θ =Φ = 0◦), κ = 3, T‖ = 10 eV, T⊥ = 20 eV, and a
magnetic-field direction (magenta) in the top-hat plane (Θ = 0◦ and Φ = 45◦). (Right) Result of our
fit to the modelled observations. The model finds the optimal combination of n, κ, T‖, and T⊥ that
minimizes the χ2 value (see text for more).

3. Results

For each set of input plasma conditions, we simulate 200 measurement samples which we fit to
derive the electron density, temperature and kappa, as explained in Section 2. By investigating the
histograms of the derived parameters, we verify that 200 samples are sufficient to derive statistically
significant results, especially within the low density (low particle flux) range. The histograms of the
derived parameters from the analysis of 200 samples with input parameters n = 7 cm−3, u0 = 500 kms−1

pointing along the x-axis, κ = 3, T‖ = 10 eV, and T⊥ = 20 eV, are shown in Figure 4. Table 1 shows
their average values and standard deviations. For these input plasma conditions, the average derived
plasma density is by ~23% lower than the input plasma density if the fitting includes Ci = 0, and by
~13% lower than the input density when Ci = 0 are not included in the fit. The standard deviation of
the derived densities is σn ~0.2 cm−3 for both fits. On average, the fitting analysis that includes Ci = 0
overestimates the kappa index by ~7%, while the fitting that excludes Ci = 0 underestimates kappa by
~23 %. The standard deviations of the derived kappa indices are ~ 0.2 and 0.1 respectively. The average
derived T‖ is by ~6% lower than the actual value when Ci = 0 are included in the fit, and by ~25%
larger than the actual value when Ci = 0 are not included in the fit. The standard deviation of T‖ is
0.3 eV when Ci = 0 are fitted and 0.7 eV when Ci = 0 are not fitted. The fit that includes Ci = 0 derives
accurately T⊥ within the standard deviation σT⊥ = 0.6 eV. The fit that excludes Ci = 0 from the fit
overestimates T⊥ by ~19%, with standard deviation σT⊥ = 1 eV.

The solar orbiter expects densities between ~5 cm−3 and ~500 cm−3. In Figure 5, we show the
derived parameters as functions of the plasma density over the expected range. The red points show
the average (over 200 samples) values of the derived parameters as determined by our fits excluding
points with Ci = 0, and the blue points show our results for the fit analysis including points with Ci = 0.
The shadowed regions represent the standard deviations of the corresponding values. The horizontal
axis on the top shows the maximum number of the expected counts (peak value at an individual E,
Φ) for the specific input parameters. On the lower side of the density (and counts) range, the plasma
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density is underestimated in both fitting strategies; however, it is more accurately determined by both
fitting strategies when n > 50 cm−3 (Cmax > 100).Entropy 2020, 21, x 7 of 15 
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Ci = 0. The shadowed regions represent the standard deviations of the corresponding values. The 
horizontal axis on the top shows the maximum number of the expected counts (peak value at an 
individual E, Φ) for the specific input parameters. On the lower side of the density (and counts) range, 
the plasma density is underestimated in both fitting strategies; however, it is more accurately 
determined by both fitting strategies when n > 50 cm−3 (Cmax > 100).  

Figure 4. Histograms of (top left) density nout, (top right) kappa index κout, (bottom left) parallel
temperature T‖,out and (bottom right) perpendicular temperature T⊥,out, as determined from the
analysis of 200 measurement samples of plasma with n = 7 cm−3, u0 = 500 kms−1 pointing along the
x-axis, κ = 3, T‖ = 10 eV and T⊥ = 20 eV. The blue histograms correspond to values derived by a fit that
includes points with Ci = 0, while the red histograms represent values derived by a fit that excludes
points with Ci = 0.

Table 1. The input and the derived bulk parameters for the histograms in Figure 4.

Parameter Input
Fit

Including
Ci = 0 Points

Fit
Excluding

Ci = 0 Points

n (cm−3) 7 5.4 ± 0.2 6.1 ± 0.2
κ 3 3.2 ± 0.2 2.3 ± 0.1

T‖ (eV) 10 9.4 ± 0.3 12.5 ± 0.7
T⊥ (eV) 20 19.8 ± 0.6 23.7 ± 1.0

The kappa index is significantly misestimated (up to 35%) over the low input density range,
if the analysis excludes points with Ci = 0. For instance, when n = 5 cm−3, the derived index κout ~ 2.
Interestingly, for the same plasma, κout is accurately determined when Ci = 0 measurements are
included in our fit. However, as the density increases to n > 20 cm−3, the kappa index is more accurately
determined when derived by fits excluding points with Ci = 0.
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For the input parameters we examine, the fitting analysis that excludes points with Ci = 0
significantly overestimates the plasma temperature in the low-density range (n < 10 cm−3). For instance,
when n = 5 cm−3 (Cmax ~ 10), the derived T‖ ~ 17 eV, which is 1.7 times greater than its actual input
value, and the derived T⊥ ~ 30 eV, which is 1.5 times greater than its actual input value. For the same
plasma conditions, when the analysis includes points with Ci = 0, the derived temperatures do not
deviate from their actual values by more than 4 %. Nevertheless, the two fitting analyses determine
similar temperatures for n > 10 cm−3.
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Figure 5. (From top to bottom) The derived electron density over input density, kappa index,
parallel and perpendicular temperature as functions of the input plasma density. The red points
represent the mean values (over 200 samples) of the parameters derived by fitting only the measurements
with Ci ≥ 1. The blue points represent the mean values of the parameters derived by fitting to all
measurements including those with Ci = 0. The shadowed regions represent the standard deviations of
the derived parameters.

Finally, we examine the fit convergence as a function of the plasma parameters; the minimum
χ2 defines the best fit parameters. Previous studies [27,33] show that the accurate estimation of the
plasma temperature depends on the accurate determination of the kappa index. In Figure 6, we show
2D plots of the χ2 value as a function of the model parameters κ, T‖, and T⊥. For each panel, we show
χ2 as a function of two parameters at a time, and we keep the remaining model parameters to their
values as determined by the best fit. We perform our calculations for input plasmas with two different
densities: n = 10 cm−3, and n = 50 cm−3. In both examples, we use κ = 3, u0 = 500 kms−1 pointing
along the x-axis, T‖ = 10 eV, and T⊥ = 20 eV as the input parameters. Red areas on the plots in Figure 6
indicate χ2 > 1. For a fixed acquisition time ∆τ and fixed geometric factor G, higher densities result
in higher counts and a smaller area of low χ2, which indicates that the derived parameters possess a
smaller uncertainty. The non-axisymmetric shape of the area of low χ2, indicates an interdependency
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of the derived kappa index and the temperatures. More specifically, the area of low χ2 shifts towards
higher temperatures and gets broader along the vertical axis for smaller κ.
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Figure 6. 2D histograms of the χ2 value as a function of (top) the modelled κ and T‖ and (bottom)
the modelled κ and T⊥, as derived for plasma with two different input densities; (left) n = 10 cm−3,
and (right) n = 50 cm−3. In both examples, we use u0 = 500 kms−1 pointing along the x-axis, κ = 3,
T‖ = 10 eV, and T⊥ = 20 eV as input parameters.

4. Discussion

We examine the accuracy of plasma electron bulk parameters as derived from the analysis of the
expected observations by SWA-EAS operating in burst-mode. Generally, the accuracy of the derived
parameters is a function of the flux of plasma particles (number of recorded counts). Our analysis
shows that the fit analysis of samples with a significant amount of counts (Cmax > 30), derives accurately
the plasma parameters when measurement points with zero counts (Ci = 0) are excluded from the
analysis. We show that when analysing observations with a low amount of counts (Cmax < 30),
the accuracy of some parameters is improved if measurement points with zero counts are included in
the fitting analysis.

The uncertainty of each measurement Ci is approximated with σi =
√

Ci, assuming that the
recorded signal follows the Poisson distribution. This results to a relative uncertainty σi

Ci
= 1
√

Ci
which

becomes considerably large for small Ci and propagates significant statistical and systematic errors
in the derivation of the plasma bulk properties. Although Poisson statistics does not really apply to
Ci = 0, these bins indicate points of velocity space with low fluxes which do not reach the detection
threshold. This information is still useful, especially when the overall signal is weak.

In Figure 7, we show the distribution of counts as a function of energy, recorded in the azimuth
anode which contains the maximum number of counts Cmax, assuming a plasma with n = 5 cm−3, κ = 3,
T‖ = 10 eV and T⊥ = 20 eV. The blue curves in both panels show the analytical model fitted to the data
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(fitted to the 2D distribution of counts) and the magenta curve indicates the expected number of counts.
In the left panel, the fitting analysis excludes measurements with Ci = 0 (red points), whereas in
the right panel, the fitting analysis includes measurements with Ci = 0 with standard deviation σi
= 1. The kappa index of the fitted model in the left panel is ~2, and the distribution’s high-energy
tail is prominent up to 2 keV, based on the inclusion of the non-zero data-points beyond ~400 eV,
neglecting all points with Ci = 0 in between. On the other hand, the fit result in the right panel does
not have a prominent tail extending beyond 400 eV, as it fits all Ci = 0 points within that energy range.
In this case, κout ~ 3 which is an accurate estimation of the actual kappa index of the modelled plasma.
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Figure 7. Number of counts as a function of energy for the pitch-angle with the maximum flux
assuming a plasma with n = 5 cm−3, κ = 3, T‖ = 10 eV and T⊥= 20 eV. The blue line is the fitted model
to the observations by (left) excluding points with Ci = 0 which are shown with red colour, and (right)
including points with Ci = 0. The magenta line is the expected counts Cexp, given by Equation (2). The
labels in each panel show the parameters as derived by the corresponding fit.

As we show in Figures 5 and 7, both fitting strategies underestimate the plasma density when the
input density is n < 50 cm−3. This is partially due to the asymmetry that characterizes the Poisson
distributions of low counts. In Figure 8, we show the Poisson distributions for Cexp = 1, Cexp = 3
and Cexp = 5. Each distribution has two modes (most frequent values); the higher mode which is
equal to the average value of the distribution Cexp, and the lower mode = Cexp − 1. The relative
difference between the two modes increases with decreasing Cexp. Samples drawn from a Poisson
distribution with a small Cexp, as is the case at low densities expected to be measured by SWA-EAS
at ~1 au, will more likely undersample the distribution than oversample, and so densities will be
underestimated. In addition, within a measurement cycle, each point of velocity space is sampled only
once. In our analysis, we consider that an individual Ci obtained at a specific point of velocity space is
representative of the average value Cexp with uncertainty σi =

√
Ci. This introduces an additional

systematic error. We illustrate this error by considering an exemplar Poisson distribution with Cexp = 5.
If we obtain one measurement, the probabilities for observing Ci = 1 and Ci = 9 are almost the same (see
Figure 8). However, in our fitting analysis, the corresponding uncertainties for Ci = 1 and Ci = 9, are σi
= 1 and σi = 3, respectively, and a χ2 minimization model fitted to these two points will shift towards
Ci = 1, as the specific point has a bigger weight σ−2

i = C−1
i = 1. This specific systematic error purely

depends on the statistical uncertainty of the measurements. We prove this by fitting the mean values of
the Poisson distribution (or higher mode value) with both fitting strategies (Figure 9). For the specific
example, we consider plasma with the same bulk properties as in the example shown in Figure 7 and
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we show that in the absence of statistical fluctuations, both fits derive identical results. The orange
curve in both panels is the lower mode of the Poisson distribution Cexp − 1, which corresponds to a
distribution with lower density. In reality, the errors associated with the statistical uncertainty of the
measurements decrease with increasing number of counts and/or when analysing average counts over
multiple samples of the same plasma.
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Figure 9. Number of the expected average counts Cexp as a function of energy in the pitch-angle bin
with the maximum particle flux, considering the same plasma conditions as in the example shown
in Figure 7. The blue curve is the model fitted to the observations by (left) excluding points with Ci

= 0 which are shown with red colour, and (right) including points with Ci =0. The orange curve is
the mode Cexp − 1. In each panel, we show the parameters as derived by the corresponding fit. In the
absence of statistical fluctuations, both fitting strategies derive identical bulk parameters.
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5. Conclusions

We investigate the accuracy of the electron plasma bulk parameters as derived by our analysis
of SWA-EAS high-time resolution measurements. We assume electrons with velocity distribution
function following the anisotropic bi-kappa distribution function and simulate the expected counts in
the instrument’s frame based on a realistic instrument model. We derive the plasma bulk parameters
by fitting the observations with an analytical model, using the χ2 minimization method.

Our analysis shows the following.

• The fit analysis of plasma measurements with relatively high flux (Cmax > 30) estimates the plasma
temperature and kappa index more accurately if it excludes measurement points with Ci = 0.
The corresponding analysis of measurements with low particle flux (Cmax < 30) estimates the
temperature and kappa index more accurately if it includes measurement points with Ci = 0.
Although Ci = 0 is a measurement with a large uncertainty, it contains information that becomes
useful when the overall signal is weak.

• Examination of the fit convergence indicates that the determination of the plasma temperature
and the determination of the kappa index are interdependent. As expected, the uncertainty of the
derived parameters decreases with increasing particle flux.

• The plasma density is underestimated when the particle flux is low (Cmax < 100). We show that the
misestimation is due to the asymmetry of the Poisson distribution and the assigned uncertainties
to the data points.

Our study predicts the accuracy of the future SWA-EAS measurements. However, our methods
can be applied to investigate and/or improve the accuracy of similar fitting analyses which determine
kappa distribution functions. Although this paper uses the kappa distribution to describe the VDFs of
plasma particles, the kappa distribution function is used to describe several other mechanisms as well
(e.g., the angular scattering of particles passing through graphene and carbon foils [41,42]).
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