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ABSTRACT

Though pick-up ions (PUIs) are a well-known phenomenon in the inner heliosphere, their phase-space distribution nevertheless is
a theoretically unsettled problem. Especially the question of how PUIs form their suprathermal tails, extending to far above their
injection energies, still now is unsatisfactorily answered. Though Fermi-2 velocity diffusion theories have revealed that such tails are
populated, they nevertheless show that resulting population densities are much less than seen in observations showing power-laws
with a velocity index of “−5”. We first investigate here, whether or not observationally suggested power-laws can be the result of a
quasi-equilibrium state between suprathermal ions and magnetohydrodynamic turbulences in energy exchange with each other. We
demonstrate that such an equilibrium cannot be established, since it would require too high PUI pressures enforcing a shock-free
deceleration of the solar wind. We furthermore show that Fermi-2 type energy diffusion in the outer heliosphere is too inefficient
to determine the shape of the distribution function there. As we can show, however, power-laws beyond the injection threshold can
be established, if the injection takes place at higher energies of the order of 100 keV. As we demonstrate here, such an injection is
connected with modulated anomalous cosmic ray (ACR) particles at the lower end of their spectrum when they again start being
convected outwards with the solar wind. Therefore, we refer to these particles as ACR-PUIs. In our quantitative calculation of the PUI
spectrum resulting under such conditions we in fact find again power-laws, however with a velocity-power index of “−4” and fairly
distance-independent spectral intensities. As it seems these facts are observationally well supported by VOYAGER measurements in
the lowest energy channels.
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1. Introduction

Suprathermal ions, picked up by the supersonic solar wind flow
as ionized neutral atoms, have become known as pick-up ions
(PUIs) and are produced all over the inner heliosphere with a
typical upwind-downwind asymmetry with respect to the inflow
direction of the neutral ISM inflow vector (Rucinski et al. 1993;
Fahr & Rucinski 1999). In the case of PUI protons, their produc-
tion is due to photoionization and charge exchange of interstel-
lar H-atoms (see Rucinski & Fahr 1991; Fahr & Rucinski 1999;
Rucinski et al. 2003; Bzowski et al. 2008). Their spatial distribu-
tion seems well understood, while the PUI-phase-space transport
is a much less settled subject. Especially it exists an ongoing de-
bate of how efficiently PUIs just after the pick-up process are
accelerated to higher energies due to nonlinear wave-particle in-
teractions (see e.g. Isenberg 1987; Bogdan et al. 1991; Fichtner
et al. 1996; Chalov & Fahr 1996, 1998; Fichtner 2001; Chalov
et al. 2004) and whether at all energy diffusion plays a relevant
role in this transport.

Some hint is given by the solar wind proton temperature be-
havior with distance. The observed non-adiabatic temperature
behavior namely proves that a specific solar wind proton heat-
ing must operate in the outer heliosphere which can only be due
to energy absorption from PUI generated turbulence, since con-
vected turbulence amplitudes quickly die out with distance (see
Smith et al. 2001; Fahr & Chashei 2002a).

Freshly injected PUIs represent keV-energetic protons in the
supersonic solar wind frame and may be called here: “primary
pick-up ions” (or: PUIs∗). The velocity distribution of these
newly produced PUIs∗ is toroidal and unstable (see Winske
& Leroy 1984; Winske et al. 1985; Lee & Ip 1987; Fahr &
Ziemkiewicz 1988). With the free energy of this unstable dis-
tribution PUIs∗ drive Alfvénic wave power. The latter enforces
pitch-angle isotropization of the initial velocity distribution (see
Chalov & Fahr 1998, 1999a). Due to wave-wave coupling, the
wave energy generated by PUIs∗ at the injection wavelength
λi = Us/Ωp is diffusively transported in wavevector space both
to smaller wavelengths where it can be absorbed by solar wind
protons and to larger wavelengths where it is reabsorbed by all
PUIs. This effect is seen as the main reason of solar wind proton
heating occurring in the outer heliosphere (Smith et al. 2001;
Fahr & Chashei 2002b; Chashei et al. 2003; Stawicki 2004).
Only a small fraction of about 5% of the PUI-generated wave
energy reappears in the observed proton temperatures. Freshly
injected PUIs excite turbulences that can organize a power-law
distribution. From this distribution, both the solar wind ions and
the PUIs themselves can absorb energy as shown by Chashei
et al. (2003). Also the approach by Isenberg et al. (2003) where
energy diffusion of PUIs is not taken into account shows that
only a low degree (2–5%) of the PUI driven wave energy is
absorbed by solar wind protons in form of thermal energy.
This raises the question where the major portion of the wave
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energy produced during the primary pick-up process goes to. To
clarify the energy redistributions, kinetic and spectral details of
the relevant processes have to be investigated. A detailed nu-
merical study of the PUI velocity distribution and the spectral
Alfvénic/Magnetosonic wave power evolution has meanwhile
been carried out (Chalov et al. 2004, 2006b) and presents a si-
multaneous solution of a coupled system of equations consis-
tently describing the isotropic velocity distribution function of
PUIs and the spectral wave power intensity.

As one can see from this study, the largest portion of the
self-generated wave energy is reabsorbed by PUIs themselves as
a result of the cyclotron resonant interaction and leads to PUI-
acceleration. It could perhaps be hoped that this energization of
pick-up protons due to Fermi-2 stochastic acceleration processes
eventually leads to the ubiquitous power-law PUI-tails pointed
out by Fisk & Gloeckler (2006, 2007). To the opposite, how-
ever, as reflected in the results presented by Chalov et al. (2004,
2006b) it is evident that this is not the case: even at larger dis-
tances close to the termination shock (100 AU) the PUI distri-
butions show a rapid cut-off at energies higher than the injection
energy. The question thus is raised here why power-laws have
been seen at all. An explanation that we are favoring here is a
new injection source to the PUI regime from high energies con-
nected with modulated anomalous cosmic ray (ACR) particles.
These protons are primary ACR particles that occur with a spec-
trum down to the typical energy of the usually assumed PUIs. At
this part of the spectrum, both particle species cannot be distin-
guished. Therefore, we refer to them as ACR-PUIs.

In Sect. 2, we investigate the physical possibility of power-
law ions in the outer heliosphere as they are recently proposed
by several authors and we find that they cannot occur with a
power-index of −5. As we show in Sect. 3, the proposed pro-
cesses are not effective enough to produce the desired ion tails
which means that another mechanism has to lead to the observed
spectrum. In Sect. 4, we show how a high-energy source can be
derived by taking a modulated ACR spectrum upstream of the
solar wind termination shock. This injection mechanism is dis-
cussed in Sect. 5 where we show that these high-energy ions
can lead to power-law ion tails, however with a power-index of
−4. The results are discussed and compared with observations in
Sect. 6.

2. Can power-law ion distributions be in equilibrium
with hydromagnetic turbulence?

Challenged by recent results concerning ion spectra at large dis-
tances (McDonald et al. 2003; Decker et al. 2005; Király 2005;
Fisk & Gloeckler 2006), we look into the problem of PUI-phase-
space transport under these new given auspices. First we dis-
cuss the argument given by Fisk & Gloeckler (2006, 2007) that
PUIs under resonant interaction with ambient compressive tur-
bulences enter a quasi-equilibrium state with saturated power-
law distributions of a somehow sacrosanct spectral velocity in-
dex of γv = −5.

The related, well-known Kolmogorov formalism is based on
a “dimensional” reasoning: The problem concerning the energy
distribution in eddies of a typical wave number k is considered
using two different dimensional quantities: namely the spectral
energy density Ek and the wave number k. The spectral energy
flux is then defined by

S = (kEk)/τk (1)

and has to be constant for stationary cases. τk is the typical life
time of eddies with scale λk = 2π/k and is given by

τk = (kvk)−1 (2)

with the typical vortex velocity vk given by

vk = (Ekk)1/2. (3)

Requiring a constant energy flux S given by Eq. (1), with
τk given by Eq. (2) then automatically leads to the Kolmogorov
spectrum in the form Ek ∼ k−5/3.

In their thermodynamical approach to particle spectra in
equilibrium with waves, Fisk & Gloeckler (2006, 2007), how-
ever, only consider one single-dimensional quantity, i.e. the ki-
netic energy T , because in their case the energy distribution �
has the dimension [�] = [T ]−1. The flux combination

SF = T · � · ΔT
Δt

(4)

is then expected by them to be constant and, thus, the energy
gain is given by

ΔT
Δt
∼ T (5)

and hence the above requirements result in the requirement that
� ∼ T−2.

This shows that the analogy of the Fisk-Gloeckler approach
with the Kolmogorov formalism is not complete, since in their
theory the quantity Δt is not specified. Only if we play the same
game with the Kolmogorov turbulence using instead of Eq. (2)
the assumption τ = (ku)−1, where u is some independent external
speed (especially independent of k), we will find from Eq. (1)
also the result

Ek ∼ k−2 (6)

analogous to the result obtained by Fisk-Gloeckler.
The problem may be briefly inspected here whether or not

some spatial/temporal disturbances in the solar wind plasma can
be considered as waves. They should be considered as waves,
if the convection time τconv = r/U is much greater than the
passage period of these waves in the wind reference frame
τ∼ = 2π/(k0vA) where r denotes the radial distance to the sun
and U the solar wind bulk velocity. The Alfvén speed is desig-
nated as vA with the corresponding wavevector k0 for the turbu-
lence. For an inequality of the kind τ∼� tconv, this then leads
to the definition of the principal wave turbulence correlation
scale given by Lm < rvA/U ≈ 0.1 AU. A more exact defini-
tion of the turbulence correlation scale is given in the paper of
Chashei et al. (2003). This value is also in accordance with the
value used by Fahr (2007) for his estimation of the upper possi-
ble velocity border. Some measurements indicate smaller values
for the turbulence correlation length than calculated by us in this
paper (see e.g. Matthaeus et al. 2005). However, the following
conclusions in our paper drawn on the effects of turbulent heat-
ing of suprathermal protons become even less promising for
an MHD-equilibrium to be established, if smaller correlation
lengths prevail. One can expect that at larger distances, r ≥
1 AU, the value for Lm increases proportionally to r, since a
similar dependence is also valid for the outer scale of turbulence
k−1

0 (see Chashei et al. 2003). Here we estimate the maximum
energy for protons resonating with these largest scales Lm at
distances of about 100 AU and find with vmax � Ω(100 AU) ·
Lm(100 AU)/γ(vmax) � Ω(1 AU) · Lm(1 AU)/γ(vmax), where
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vmax, γ(vmax) and Ω are the maximal ion speed, the associated
Lorentz factor and the ion gyrofrequency, respectively. Protons
with these speeds have energies of about Emax ≈ 1 GeV inde-
pendent of distance. Thus, ions with E ≤ Emax can be expected
to be scattered by waves, whereas ions with E ≥ Emax can only
be scattered by large scale velocity structures in the solar wind.

Since in any case, however, power-laws seem to be a fact
well supported by observations within a certain range of solar
distances and ion energies, we shall nevertheless take this find-
ing as serious here as deserved and determine in the following
the absolute spectral intensity of this PUI-power-law distribution
and its consequences.

If the PUI distribution is given in the form

fpui(r, v) = fpui,0 ·
(
v

v0

)γv
(7)

with the velocity-power index γv = −5, then the PUI density is
given by

npui(r) = 4π fpui,0 ·
v∞∫
v0

(
v

v0

)−5

v2 dv � 2π fpui,0 · v3
0, (8)

where fpui,0 = fpui,0(r) is a local normalization value, and v0
and v∞ are lower and upper velocity limits of the quasistationary
PUI-power-law.

Using ψ = v/v0, one obtains for the power-law PUI pressure
as the second moment of the distribution function the following
result:

Ppui(r) = 4π fpui,0
m
2
v5

0

ψ∞∫
1

ψ′−5ψ′4 dψ′ = 2πm · fpui,0v
5
0 ln(ψ∞). (9)

Evidently, the definition of Ppui(r) requires the determination
of all three local values fpui,0(r), v0(r), and v∞(r) which we aim
at below.

2.1. Determination of the inner and outer velocity border

Using the definition of the lower velocity border as done by Fahr
(2007) one finds

v0 � 1
5

U

(
r
rE

)1/4

. (10)

With the above result one obtains the PUI distribution in the
form

fpui,0 = npui(r) · 1

2πv3
0

=
53

2πU3
npui(r) ·

(
r
rE

)−3/4

. (11)

The local PUI density can be derived from the interplanetary
H-atom density nH(r, θ), which depends on the radial distance
r and the inclination angle θ with respect to the upwind axis,
and the effective (charge exchange + photoionization)-induced
injection rate βpui = nH(r, θ) [ns(r)σexU + νi]. Here ns(r), σex,
U, νi denote the solar wind proton density, the charge exchange
cross section, the solar wind bulk velocity and the photoioniza-
tion frequency. The H-atom density at distances r ≥ 5 AU in the
upwind hemisphere is satisfactorily well given by the following
expression (see Fahr 1971):

nH(r, θ) = nH,∞ exp

⎡⎢⎢⎢⎢⎣−βpui,0r2
0θ

Ur sin θ

⎤⎥⎥⎥⎥⎦ (12)

and thus leads to the following PUI density (also see Fahr &
Rucinski 1999)

npui(r, θ) =
( r0

r

)2
npui,0 +

1
r2U

r∫
r0

βpui(r′, θ)r′2 dr′. (13)

From the above one derives the following radial space
derivative which later on in this paper will be needed:

∂npui(r, θ)

∂r
=
−2npui(r, θ)

r
+
βpui(r, θ)

U
. (14)

To calculate the PUI pressure, one more quantity in addi-
tion is needed, namely the upper velocity border v∞. To de-
termine v∞ we follow the idea presented by Fisk & Gloeckler
(2006, 2007) assuming that PUI-power-law distributions result
from a specific quasi-equilibrium state self-establishing such
that the wave field transfers per unit of time as much energy
to PUIs by energy diffusion, as energy is expended in the solar
wind frame for the work done by the pressure gradient of co-
moving PUIs against the magnetosonic fluctuations. The impor-
tant restriction to energy diffusion by nonlinear interaction with
the compressive fluctuations is that the typical diffusion period
τdiff � 3L2

m/vλ‖ should be much larger than the convection pe-
riod given by τconv � Lm/U (see Chalov et al. 2003). This leads
to the requirement

Lm >
vλ‖
3U

(15)

with λ‖ as the mean free path for particles parallel to the mag-
netic field. The uppermost velocity v∞ is the limit at which this
condition is just fulfilled:

v∞ � 3ULm

λ‖
. (16)

We assume the interaction of the particles with a slab Alfvénic
turbulence field. The mean free path is given by

λ‖ =
3v
8

+1∫
−1

(1 − μ2)2

Dμμ
dμ (17)

with the pitch-angle diffusion coefficient

Dμμ = Dvv,0v
−2
A

(
U3

rE

) (
v

U

) ( rE

r

)3/4
(18)

from Chalov et al. (2003) for cyclotron resonant wave-particle
interaction with unpolarized, one-dimensional, and isotropic tur-
bulence, which leads to the velocity-independent expression

λ‖ =
2
5
v2

A

( rE

U3

) ( U
Dvv,0

) ( rE

r

)3/4
= λ‖,E

( rE

r

)3/4
(19)

for the mean free path, with the reference value

Dvv,0 =

√〈δu2〉E
U

rE

9Lm
(20)

for the diffusion coefficient. Therefore, the upper velocity border
is given by

v∞ � 3ULm

λ‖,E
, (21)
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which evaluates to

v∞ � 9
0.3

( rE

r

)3/4
U (22)

by taking Lm = 3 AU and λ‖,E = 0.3 AU (Chalov & Fahr 1999b).
The ratio

ψ∞ =
v∞
v0
= 150x−1 (23)

is needed in the later calculation and should be compared with
the result obtained by Fahr (2007) deriving the upper velocity
border from the study of the uppermost resonance possibilities
of ions with the largest prevailing correlation lengths Lm existing
in the solar wind velocity structures, yielding the result

ψ∞ = 30 · x−3/4, (24)

which gives smaller values than those derived for conditions
when balanced pressure equilibrium in the sense of Fisk &
Gloeckler (2007) is adopted. Here below we shall demonstrate
that this value for ψ∞, which is the direct consequence of the
assumptions by Fisk, definitely leads to unreasonable conse-
quences when we investigate the associated PUI pressure.

2.2. The upstream PUI pressure

We calculate the PUI pressure resulting from power-law dis-
tributed PUIs upstream of the shock and find with Eqs. (9)–(11)
and (23)

Ppui(x) = mU2npui(x)x1/2 ln
(
150x−1

)
, (25)

where we have introduced x = r/rE. We obtain the pressure gra-
dient by differentiation:

∂Ppui

∂x
= mU2 ×

[
∂npui

∂x
x1/2 ln

(
150x−1

)
+

1
2

npuix
−1/2 ln

(
150x−1

)
− npuix

−1/2

]
, (26)

which leads with Eq. (14) to

∂Ppui

∂x
= mU2 ×

[
−3

2
npuix

−1/2 ln
(
150x−1

)
+
βrE

U
x1/2 ln

(
150x−1

)
− npuix

−1/2
]
. (27)

If now we derive the effective upstream Mach number, ne-
glecting thereby solar wind electron and proton pressures com-
pared to the PUI pressure, i.e. assuming Pe; Ps � Ppui, and fol-
lowing the definitions by Fahr & Rucinski (1999), we obtain

M∗2s =

(
U
C∗s

)2

=
U2 ∂ρs

∂r
∂
∂r (Ps + Pe + Ppui)

� 2ns

3
2 npuix1/2 ln

(
150x−1

) − βrE

U x3/2 ln
(
150x−1

)
+ npuix1/2

.

(28)

With Λ = βr0

Uns
� 10−2 and the PUI abundance ξ = npui/ns � 0.2

(see Fahr & Rucinski 1999), we obtain

M∗2s =
2x−1/2

ξ
(

3
2 ln

(
150x−1

)
+ 1

)
− Λ rE

r0
x ln

(
150x−1

) . (29)

For a shock position at x � 100 and with the lower reference
distance r0 � 5 AU, this expression yields

M∗2s = 0.83, (30)

which means that the effective upstream Mach number M∗s =
0.91 is lower than 1.

Hence, power-law PUI pressures in balance with the wave
fields would not allow for the occurrence of a termination
shock of the solar wind (i.e. needing upstream Mach numbers
M∗s ≥ 1!).

The non-existence of the above “turbulence-particle”-
equilibrium (TPE) can also be concluded along a different line
of argumentations together with the calculation of the down-
stream PUI pressure connected with power-law distributed PUIs.
Using the results presented in Fahr & Lay (2000), one obtains
on the basis of Liouville’s theorem and conservation of mag-
netic moment at the passage from upstream to downstream over
the shock the PUI-distribution function downstream of the shock
(indicated by index 2) by the following relation:

fpui,2(v) =
1√

s
fpui,1

(
v√
s

)
(31)

depending on the upstream distribution function fpui,1, where s
denotes the compression ratio at the shock. From that relation
one obtains for the downstream PUI pressure Ppui,2 the following
expression

Ppui,2 =
m

2
√

s

√
sv∞∫

√
sv0

fpui,1(v/
√

s)v4 dv

=
m
2

s2

v∞∫
v0

fpui,1(v)v4 dv = s2Ppui,1, (32)

which states that the downstream PUI pressure is enhanced with
respect to the upstream PUI pressure by the factor s2. Reminding
that the latter pressure for TPE-conditions is given by

Ppui,1(rsh) = mnpui(rsh)U2

(
rsh

rE

)1/2

ln

(
150

rE

rsh

)
(33)

one finds that the downstream PUI pressure should amount to

Ppui,2(rsh) = mnpui(rsh)s2U2

(
rsh

rE

)1/2

ln

(
150

rE

rsh

)
, (34)

which normalized with the upstream solar wind kinetic energy
density εkin = (1/2)mU2(ns) would require that

Ppui,2(rsh)

εkin(rsh)
= 2ξ(rsh)s2

(
rsh

rE

)1/2

ln

(
150

rE

rsh

)
(35)

with ξ(rsh) � 0.2 denoting the PUI abundance at the shock. This
would mean that the downstream thermal energy of the PUIs
is much higher than the kinetic energy of the upstream solar
wind which is forbidden by physical reasons. This again leaves
to conclude that PUIs cannot exist in pressure equilibrium with
the compressional magnetosonic turbulence that was assumed
by Fisk & Gloeckler (2007) and cannot be responsible for the
stochastic particle acceleration up to regions near the solar wind
termination shock.
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Requiring that the downstream thermal energy of the PUIs
stays below the upstream kinetic energy of the PUIs would re-
quire instead an upper border v∞ of the PUI power spectrum de-
fined by

Ppui,2 =
ms2

2

v∞∫
v0

fpui,1(v)v4dv

= s2
[
4π fpui

m
2
v5

0 ln(ψ∞)
]
≤ m

2
U2(ns + npui) (36)

yielding

ln(ψ∞) ≤ U2(ns + npui)

s24π fpuiv
5
0

=
U2(ns + npui)

2s2npuiv
2
0

=
25

2s2ξpui

(
rsh

rE

)−1/2

.

(37)

Evaluating this formula with s = 2.5, ξpui = 0.2, and rsh =
100rE leads to the result

ln(ψ∞) ≤ 25
2 · 2.52 · 0.2 · 10

= 1 (38)

and means that ψ∞ = exp(1) = 2.72 and v∞ � 2.72U, i.e. much
lower than required for pressure equilibrium conditions.

3. The relative effectiveness of energy diffusion and
convective changes at ion phase-space transport

In the following we want to clarify the role of energy diffusion in
determining the shape of the PUI-distribution function. We start
from the transport equation adequate to describe the phase-space
behavior of the PUIs by a distribution function f (t, r, v) (see e.g.
Isenberg 1987; Chalov & Fahr 1996)

∂ f
∂t
+ U

∂ f
∂r
−

(
v

3

) (
∂ f
∂v

)
divU =

1
v2

∂

∂v

(
v2Dvv

∂ f
∂v

)
+Q(r, v) + S (r, v), (39)

where U is the solar wind bulk speed, Dvv is the velocity dif-
fusion coefficient, and, Q(r, v) and S (r, v) are functions describ-
ing PUI-injection sources and -phase-space losses. Terms on the
left-hand side of the above Eq. (39) under steady state conditions
induce changes with a typical convection time τconv given by

τconv ≈ r/U, (40)

where r is of the order of the heliocentric distance.
Considering quasi-linear velocity diffusion of particles due

to Fermi-2 type interactions with the Alfvénic- or magnetosonic
turbulence, both of which are leading to analogous expressions
(see Toptygin 1985; Le Roux & Ptuskin 1998; Chalov & Fahr
2000). For our estimates here, one can use the diffusion coeffi-
cient derived by Schlickeiser (1989) which for estimate purposes
can be represented in the following form:

Dvv ≈ δM0Ωv
2
A

(
k0

kres

)α−1

, (41)

where kres = Ω/v is the resonant wave number, Ω the pro-
ton cyclotron frequency, vA the Alfvén speed, k0 the turbulence
outer scale, α � 5/3 (or � 3/2) the power exponent of the 1D-
turbulence spectrum, and δM0 is the fractional turbulence level

δM0 =
〈δB2〉
〈B〉2 , (42)

where B is the induction of local interplanetary magnetic field.
Typical velocity diffusion times τdiff characterizing the action of
the first term of the right-hand side of Eq. (39) in changing the
distribution function f can be defined by

τ−1
diff ≈ Dvvv

−2. (43)

Combining the relations given by Eqs. (40), (42), (41), and (43)
yields as a typical ratio of the characteristic times

χ(v, r) =
τconv

τdiff
≈ δM0

⎛⎜⎜⎜⎜⎝ v2
A

vU

⎞⎟⎟⎟⎟⎠ (kresr)

(
k0

kres

)α−1

∼ vα−3. (44)

At heliocentric distances r ≈ rE = 1 AU, one can assume
(Chashei et al. 2003) δM0 ≈ 0.1, vA ≈ 0.1U, k0 ≈ 10−11 cm−1,
α = 3/2 for Iroshnikov-Kraichnan turbulence (i.e. a power-law
for the spectral energy density Ek ∼ k−3/2) or α = 5/3 for
Kolmogorov turbulence (i.e. Ek ∼ k−5/3), which are the two
mostly found and discussed spectral energy distributions in so-
lar wind turbulence (Bale et al. 2005; Horbury et al. 2005). Then
near 1 AU, we find a ratio χ(U, 1 AU) ≈ 1 showing that convec-
tion and diffusion processes here are of comparable importance
for the particles with v ≈ U, while convection effects are of in-
creasing importance for particles with higher velocities, i.e. with
v > U. This result is in good agreement with other considera-
tions (Matthaeus & Goldstein 1986; Jokipii & Kota 1989; Zank
& Matthaeus 1992; Zank et al. 1996; Horbury & Balogh 2001).
Isenberg (2005), however, concludes that the effect of energy dif-
fusion is small for PUIs. His similar treatment is parametrized by
the percentage of turbulence occurring in slab Alfvénic fluctua-
tions. Nevertheless, these two approaches can be conciliated if
this percentage is assumed to amount about 20%.

At larger heliocentric distances, r > 1 AU, the frozen-in
Parker magnetic field near the ecliptic is nearly azimuthal and
decreases with (1/r). Correspondingly, the resonant wavevector
behaves like kres ∼ Ω ∼ 〈B〉 ∼ r−1, which leads to kresr = const.
Besides that, as argued by Chashei et al. (2003), the follow-
ing r-dependences can be expected: k0 ∼ r−1 and δM0 ∼ r−2/3.
Consequently, the radial dependence of χ(v, r) is exclusively de-
termined by the r-dependence of δM0 meaning that

χ(v, r) ≈
(

r
rE

)−2/3 (
v

U

)−7/3
(45)

in case of Kolmogorov turbulence. The above Eq. (45) shows
that at larger solar distances energy diffusion of particles cannot
determine the shape of the suprathermal tail of the resulting PUI-
distribution function.

In fact, assuming for reasons of a better clarification, just to
the contrast here, a dominance of the energy diffusion, i.e. ne-
glecting all the terms in Eq. (39) except for the diffusion term,
would deliver as a result of the transport equation the distribu-
tion f ∼ v−α. This distribution thus should evidently be much
flatter than the obviously observed distribution f ∼ v−5 (Fisk &
Gloeckler 2006) indicating that energy diffusion in fact plays an
inferior role.

This result also turned out from more quantitative calcula-
tions of wave-particle interactions in the outer heliosphere by
Chalov et al. (2006a) or Fahr & Chashei (2007) in which a con-
sistent treatment of PUI transport in phase-space and wave tur-
bulence transport in k-space was presented. From these calcula-
tions it becomes evident that in fact in the outer heliosphere PUIs
drive turbulence powers, but are not efficiently enough profiting
from energy diffusion to produce power-law tails.

The only way to fill up ion tails at energies larger than 1 keV
resulting in some power-law distribution, as it seems to us, is
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to inject ions into the PUI regime at higher energies of about
≥50 keV and then let them cool to smaller energies at their co-
convection with the solar wind. This would be a process similar
to the one of PUIs originating from freshly ionized neutral atoms
which are injected at about 1 keV (see Fahr 2007; Siewert & Fahr
2008). In the following, we study such a high-energy injection
mechanism to the PUI energy regime resulting from ACR ions
that are adiabatically cooled to lower energies and, therefore, can
be called ACR-PUIs.

4. Injection to the PUI regime from the high-energy
side

Here we first want to study the modulated part of the ACRs
with origin near the solar wind termination shock and investi-
gate whether they can perhaps serve as a possible injection seed
from high energies into the PUI regime. We start from the ana-
lytic expression for the modulated ACR spectral intensity given
for the case of a spherically symmetric solar modulation. The
differential ACR intensity for this case is given by the following
expression (Stawicki et al. 2000):

j(r, p) = p2 f (r, p)

=
3
b

∫
dr0

∫
dp0

S (r0, p0)
U

p0y0

φ

( r0

r

) 1+δ
2

(
p0

p

) 3δ−4γ−5
2(2+γ)

× exp

(
−y0(1 + h2)

φ

)
I 1+δ

1+γ−δ

(
2y0h
φ

)
, (46)

where S (r0, p0) denotes the ACR source function with source
coordinates r0 and p0, In is the modified Bessel function of the
first kind, U denotes the solar wind bulk velocity, and h and φ
have the following definitions:

h =

(
r
r0

) 1+γ−δ
2

(
p
p0

) 3
2b

, (47)

φ = 1 −
(

p
p0

) 3ν
2+γ

(48)

with the following additional quantities

y0 =
ν

(1 + γ − δ)2

r0U
κrr,0

, (49)

b =
2 + γ

(1 + γ − δ)
, (50)

ν =

(
1 + γ − δ + 2 + γ

3
ε

)
(51)

and the following assumptions of the r- and p-dependences:

U(r) ∼ rγ, κrr(r, p) = κrr,0

(
r
rE

)δ ( p
pE

)ε
(52)

with an arbitrary reference momentum pR for the bulk velocity
and the spatial diffusion coefficient κrr.

As shown by Stawicki et al. (2000), the above expression
can be simplified for low values of ACR particle momenta p and
then yields the following expression for the ACR distribution:

f (r, p) � 3
bΓ(b)

∫
dr0

∫
dp0

S (r0, p0)
p0U

yb
0 exp(−y0). (53)

The modulation of the ACR spectrum due to spatial diffusion is
contained in y0. This shows that, hence, the ansatz by Stawicki
et al. (2000) is an analytical way to express the modulated distri-
bution function of the ACRs in the heliosphere. In the frame of
its accuracy, this approach yields a valuable way to take the mod-
ulated ACR spectrum as the source of our cooling mechanism.
The spectrum of the ACR particles at the solar wind termination
shock serves as the ACR source function and, thus with good
reasons, one adopts the function developed by Drury (1983) for
an ideally planar shock which is given by

S (r0, p0) =
1

r2
0

∂

∂r0
r2

0ζ0

=
1

r2
0

∂

∂r0
r2

0

[
SACR,0 ·

(
p0

pi

)−q

· exp

(
− p0

pmax

)
δ(r0 − rsh)

]
, (54)

where the spectral index q is connected with the shock compres-
sion ratio s by q = 3s/(s − 1). pi, pmax are appropriate values of
the Fermi-1 injection momentum and of the upper cut-off mo-
mentum, respectively. This then leads to

f (r, p) � 3SACR,0

bΓ(b)U

∞∫
0

dp0

pi

(
p0

pi

)−q−1

exp

(
− p0

pmax

)

×
(

ν

(1 + γ − δ)2

rshU
κrr,sh

)b

exp

(
− ν

(1 + γ − δ)2

rshU
κrr, sh

)
.

(55)

This expression represents a constant distribution function.
Numerical simulations by Fichtner & Sreenivasan (1999) show a
linear dependence of the ACR flux on the energy ( jE ∼ E). This
means that the distribution function in phase-space is constant
which can be shown by considerations about normalization of
the differential flux and the distribution function:

f = 4π
m jE

p3

dE
dp
∼ jE

E
= const. (56)

Therefore, the f (r, p) of the ACR particles is given by a con-
stant value which follows from modulation theory:

f (r, p) � fconst. (57)

From the above expression we develop the total streaming
S (r, ppui,i) (see Gleeson & Axford 1967; Fahr 1990; Fahr &
Verscharen 2009) for the ACR-PUIs in the range between the in-
jection momentum pi and an upper border ppui,i. ACR particles
with higher momenta propagate only according to the transport
equation for cosmic rays and do not participate in the diffusive
injection. With these considerations we find

S =

ppui,i∫
pi

p2U

(
1
3

f − 1
3p

∂

∂p
f

)
dp =

(
p3

pui,i − p3
i

)
9

U fconst (58)

as the total particle streaming at each place r. Since we expect
that ppui,i � pi, the lower border pi can be neglected in Eq. (58).

Now we consider the local spatial divergence of this ACR-
PUI streaming at some lower momentum border and take this to
be the high-energy injection source Q to the PUI regime. With
this choice, we obtain

Q =
1
r2

∂

∂r
r2S =

2p3
pui,iU fconst

9r
(59)

as the divergence of the ACR particle flux, constituting a PUI
source.
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5. PUI Boltzmann-Vlasov equation with
ACR-induced injection

In the “solar” rest frame (SF), the representative Boltzmann-
Vlasov equation (BVE) is given by

(U · ∇r) f +

(
dv
dt

∣∣∣∣∣
m
· ∇v

)
f = U

∂ f
∂r
+ U

∂v

∂r

∣∣∣∣∣
m

∂ f
∂v
= P(r, v) (60)

under the prevailing conditions in the outer heliosphere, i.e. neg-
ligible energy diffusion, for the stationary case (Fahr 2007).
The corresponding BVE equation in the “solar wind” rest frame
(WF) has the form (Fahr 2007)

∂ f̃
∂t
+

1
v2

∂

∂v

(
v2v̇m f̃

)
= P̃(t, v), (61)

where the second term on the left-hand side describes the
velocity-space divergence of the phase-space flow connected
with the magnetically induced deceleration (i.e. magnetic cool-
ing), which is indicated by the subscript m. The coordinate
t = t(r) denotes the proper time in the co-moving reference
frame (WF). Furthermore, P̃(r, v) is the local ion injection rate
to the PUI regime.

For low energies (≤1 keV), this rate is due to locally freshly
ionized neutral H-atoms and is given by P̃(r, v) = β(r) 1

4πv2U
δ(v − U) with β(r) being the local PUI production rate (Fahr &
Siewert 2008).

For high energies (≥50 keV for the ACR-PUIs), the relevant
injection, in contrast to the normal sub-keV PUIs, in our view is
given by the upper expression derived from the modulated ACR
spectrum and given by Eq. (59).

Furthermore, v̇m is determined by the magnetically induced
velocity decrease of particles with a velocity v, when they are
convected outwards with the solar wind bulk flow at a mean ve-
locity U to larger distances where the co-convected interplane-
tary magnetic field B appears reduced in magnitude (Fahr 2007).
At larger distances r ≥ 5 AU near the ecliptic, the magnetic field
decreases like (1/r) (i.e. in case of the nearly azimuthal, distant
Parker field). Under these conditions, one finds the following
v-dependent magnetic velocity-space drift

v̇m = −U
v

r
(62)

and its associated radial gradient

∂vm

∂r
=

1
U
v̇m = − vr (63)

in the form given by Fahr & Siewert (2008).
Ions which are picked up at rv with a velocity U will, with-

out other processes being involved, have “magnetically” cooled
down to a velocity v at r if the relation rv(v) = rv/U is fulfilled.
The injection of freshly created PUIs at rv(v) with an initial ve-
locity v = U will be responsible for ions with velocity v at r.

Taking all these constraints together, one finally finds, when
reminding that the time and distance coordinates are related to
each other by dr = Udt, that for velocities v ≤ U the solution for
f̃ in the WF is given by (see Fahr 2007; Siewert & Fahr 2008)

f̃≤ =
1

2π

rβ
(
v
U r

)
U

v−3. (64)

This distribution function f̃≤ can be evaluated for larger so-
lar distances r ≥ r0 = 5 AU in the upwind hemisphere for near-
ecliptic positions assuming that at such solar distances the up-
wind H-atom density can be considered as essentially constant,

meaning that nH

(
v
U r

)
= nH(r) = nH,∞. This in fact is an accept-

able approximation for solar distances r ≥ 5 AU and velocities
1U ≥ v ≥ 0.2U, and then leads to

f̃≤ =
r

2πU
νex,Er2

E

(
v

U
r
)−2

nH,∞v−3 =
νex,Er2

EU

2πr
nH,∞,v−5 (65)

i.e. to the astonishing fact that under pure magnetic cooling, the
resulting PUI-distribution function for velocities v ≤ 1U is a
power-law with the interesting power-index α = −5 predicted
and confirmed by Fisk & Gloeckler (2006, 2007); however, in
their case expected as result of an assumed quasi-equilibrium
state established between magnetoacoustically driven ion energy
diffusion and magnetoacoustic turbulence generation.

The above result is valid only for ions with v ≤ U. One possi-
bility that we now start to see here is that for ions with velocities
v ≥ 1U, i.e. much higher than the original PUI-injection thresh-
old, one has to consider in addition some high-energy injection
rate due to modulated ACRs as we have derived above.

For those ACR-induced ions (i.e. for the ACR-PUIs) with
the relevant source function

Q =
2p3

pui,iU fconst

9r
, (66)

we find analogously to Eq. (64) for ACR-PUIs

f̃≥ =
1

2π

rQ
(
r v
vpui,i

)
U

v−3 =
1

2π

r ·
[

2p3
pui,i

vpui,i
v

9r U fconst

]
U

v−3, (67)

which finally leads to an r-independent distribution function for
the range v ≥ U in the form

f̃≥ =
1

9π
m3

pv
4
pui,i fconstv

−4. (68)

Altogether, thus, we obtain the total PUI distribution in the
following form:

f̃ = f̃≤ + f̃≥

=
νex,Er2

EU

2πr
nH,∞v−5H(U − v) + 1

9π
m3

pv
4
pui,i fconstv

−4, (69)

where H(x) is the well-known step function with H(x ≤ 0) = 0
and H(x ≥ 0) = 1.

In any case, the above result shows that a velocity-power in-
dex of “−5” is obtained for the velocity range v ≤ U ≤ vpui,i
and a power-index of “−4” is obtained for the velocity range
U ≤ v ≤ vpui,i where vpui,i = ppui,i/mp.

Rescaling velocity in units of U (i.e. X = v/U) leads to the
total distribution function

f̃ =
(σexnsEU) r2

E

2πrU4
nH,∞X−5H(1 − X) +

1
9π

m3
pX4

pui,i fconstX
−4

=
nsE

2πU3

[
Λ

(rE

r

)
X−5H(1 − X)+

2
9π

m3
pX4

pui,iU
3 fconst

ns,E
X−4

⎤⎥⎥⎥⎥⎥⎦ . (70)

We introduce now two dimensionless characterizing quanti-
ties. First, we define

Λ = (σexnH,∞rE) � 2.3 × 10−3, (71)

where the charge exchange cross section σex � 10−15 cm2 (Fahr
1971) and the hydrogen density nH,∞ � 0.15 cm−3 (Izmodenov
et al. 2003) are used.
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With

Δ =
2

9π

m3
pX4

pui,iU
3 fconst

ns,E
, (72)

one can finally find

f̃ (r, v) =
nsE

2πU3

[
Λ

(rE

r

)
· X−5H(1 − X) + Δ · X−4

]
. (73)

Measurements by the SWICS instrument on the ULYSSES
space probe show a PUI-phase-space density of about
100 s3 km−6 at two times the solar wind velocity at a distance
of 5.26 AU (Gloeckler 2003). Equation (73) leads to a value for
the PUI-phase-space density of about f̃≤ � 155 s3 km−6, which
is in good accordance to the observations. The difference could
be a consequence of the assumption of a constant nH, especially
at small distances from the sun.

Observations by the LECP instruments on VOYAGER 1 and
2 (Lanzerotti et al. 2001) show an r-independent proton intensity
in the energy range 0.57–1.78 MeV of about jE � 4 × 10−4 par-
ticles per (cm2 s sr MeV), which corresponds to jE � 250 par-
ticles per (cm2 s sr erg) in Gaussian units. This value can be
converted to a phase-space density (cf. Eq. (56)):

f̃≥ = 4π
m3

p jE

p2(1 MeV)
= 2.7 × 10−39 s3 cm−6. (74)

If we assume that these ions observed by Lanzerotti et al. (2001)
are ACR-PUI particles with the proposed behavior, this leads to
a value for Δ obtained from the measurements of

Δ =
2πU3

nsE
X4(1 MeV) f̃≥ = 3.1 × 10−10. (75)

We take this observational value to avoid uncertainties at the de-
termination of the ACR intensity fconst and the injection border
Xpui,i. The calculated spectra are shown in Fig. 1.

6. Comparison of our results with data

Now we want to compare the above results with VOYAGER and
ULYSSES spectral ion data. For that purpose, we first transform
the above velocity distribution function into a distribution of
spectral energy flux j(E) given in units of (ions/(cm2 s sr MeV)).
This then leads to

j(E) ∼ √E · f (E) ∼ √E

(
E
E0

)(1−αv)/2

∼
(

E
E0

)(2−αv)/2
∼

(
E
E0

)−αE

, (76)

where αv and αE are the velocity- and the energy-power indices,
respectively. As one can easily see, αv = 5 leads to αE = 1.5,
whereas αv = 4 would lead to αE = 1.0. Looking into the data
obtained by VOYAGER 1 during the year 2004 (see Decker et al.
2005, 2006) before the shock crossing occurred, one can find –
even though the data are very time-variable in this interval – that
for ions with higher energy (E � 103 keV) the energy-power in-
dex has been observed with αE (E ≥ 200 keV) � 1.5, whereas in-
terestingly enough for ions with lower energy (i.e. E � 40 keV)
a smaller power-index of αE(E ≤ 200 keV) � 1.0 seems to be
indicated. That supports our above derived theoretical prediction
that the velocity-power index of ACR-induced PUIs in the outer
heliosphere is αv � 4, rather than αv � 5 as for the ions with
higher energy (MeV).
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Fig. 1. Phase-space density spectra for PUIs and ACR-PUIs. The PUI
distribution is dependent on the distance from sun, whereas the ACR-
PUIs are not. PUIs cannot gain velocities above U, i.e. X = 1. The
solid line is led down to the ACR-PUI spectrum at the cut-off at X = 1
artificially.

Also during the most recent VOYAGER 2 crossing of the
shock (see Decker et al. 2008) it became evident that the energy-
power indices registered both before and after the shock crossing
show values of αE,1 � αE,2 � 1.2 ± 0.2 which also nicely con-
firms a velocity index of αv � 4.

In addition, it is important to recognize that the particle de-
tectors of the VOYAGER spacecraft did not see radial changes
of the spectral flux intensity j(E) at the lower energy channels
(0.35–1.5 MeV) during the period from years 1995 through 2005
(Lanzerotti et al. 2001; Decker & Krimigis 2003; Krimigis et al.
2003). This is also a support for the newly derived theoreti-
cal expression given in Eq. (73) and showing that a distance-
independent intensity can be expected at energies 5 keV ≤ E ≤
100 keV. Only the part of the spectrum that is a result of cooled
PUIs shows a dependence on the distance due to the different
PUI abundances. The ACR-PUIs that are injected from ACRs
and cooled from high energies, however, are proven to have no
radial variation.

Our model explains occurring power-law tails with an in-
dex −4. There are, however, observations around 5 AU undoubt-
edly showing a power-index −5 for suprathermal ion tails (e.g.
Gloeckler 2003). As we can show, the favored explanation by
Fisk & Gloeckler (2006, 2007) cannot hold in the described way.
Maybe other processes (such as anomalous Fermi-2 type wave-
particle energy diffusion), which are not treated in our approach,
can lead to a power-index of −5 at energies just above 5 keV.
But this interaction does not explain the occurrence of extended
power-law tails at larger distances (Chalov et al. 2004).

It is perhaps still a little bit an open question, where, i.e. at
what lower energy, one should cut off the modulated ACR spec-
trum to calculate the injection to the PUI regime. Even though
this does not count very much in quantitative terms, since the
lower energy part of the modulated ACR spectrum has in fact
a constant distribution function (see Eq. (56)), it may neverthe-
less represent an intellectually interesting question, to decide up
to what energies convection and Fermi-2 energy diffusion are
dominant, and from what energies upwards Fermi-1 acceleration
and spatial diffusion dominate. There is one clear hint given to
answer this question, namely by the momentum dependence of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810755&pdf_id=1
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the spatial diffusion coefficient κrr(r, p) generally given in the
form

κ(r, p) = κ0κr(r)κp(p) ∼
(

r
rE

)δ ( p
pR

)ε
, (77)

where, dependent on the momentum range, the exponent γ is ex-
pected to be in the range 1 ≤ γ ≤ 2 (see Le Roux & Potgieter
1992; Jokipii 1996). This shows that spatial diffusion becomes
less and less efficient, the lower the ion momentum p is. Below
some critical value pc, ions lose their degree of kinetic freedom
to spatially diffuse relative to the solar wind background flow
and, thus, they are simply convected outwards with the solar
wind bulk flow then.

The determination of the absolute height of the ACR-PUI
spectrum is a slightly problematic endeavor. In our calculation,
we normalize the absolute spectrum with the aid of observational
data. The ACR intensity fconst and the limit for the momentum,
up to which the injection is effective due to the total streaming
(see Eq. (58)), are quite uncertain. Another open question re-
sults from a lack of data. Especially, the transition from the PUI
to the ACR-PUI part has not been covered sufficiently by parti-
cle detectors in the outer parts of the heliosphere. Maybe future
missions can provide a closer look to this part of the spectrum.
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