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Abstract

The break in power spectral density (PSD) around the ion scales indicates the onset of dissipation and/or
dispersion of kinetic turbulence. For Alfvén waves in the kinetic regime, the dissipation and dispersion are
individually dependent on the propagation angle, θkB, which has θRB (the angle between radial direction and local
mean magnetic field direction) as a proxy in solar wind measurements. The relation between θRB and the break
position helps us find the role of dissipation and/or dispersion for deforming the PSD profile. In order to locate the
spectral break position automatically and quantitatively, we develop a dual-power-law fitting method to fit the PSD
profiles in both MHD and kinetic ranges simultaneously. The break position fb is found to change little with θRB,
suggesting an angular independence of the spectral break. Furthermore, fb in our statistical study of fast solar wind
near 1 au is consistent with a wavenumber k satisfying k(ρp+dp)∼1 (ρp is the thermal proton gyroradius and dp
is the proton inertial length), independently of θRB. To interpret this independence, we incorporate the effects of
both dissipation and dispersion in a unified description, which is the breakdown of the magnetic frozen-in
condition in wavenumber space (kP, k⊥). The breakdown of the frozen-in condition is relatively isotropic compared
to the strong anisotropy of dispersion and dissipation. Furthermore, the spatial scale for the onset of the breakdown
frozen-in condition is estimated to be the sum of ρp and dp.
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1. Introduction

The Solar wind in the heliosphere is often regarded as a natural
laboratory for collisionless plasma turbulence. The Omnidirec-
tional (or reduced) power spectral density (PSD) of the turbulent
fluctuations is divided into three parts in wavenumber space: an
energy-containing range at small wavenumbers, an inertial range
of cascading energy at medium wavenumbers, and a dissipation
range at large wavenumbers (Tu & Marsch 1995; Bruno &
Carbone 2013; Kiyani et al. 2015). Different power-law functions
can be used to describe the energy-containing range and inertial
range of the turbulence PSD in the solar wind. For example, the
PSD of the magnetic turbulence in the energy-containing range
and the inertial range can be approximated by power-law
functions with a power index of −1 and −5/3, respectively. At
smaller scales beyond the inertial range, turbulent energy begins
to dissipate and is transferred to the thermal energy of the plasma
while wave behavior becomes dispersive. The onset of the
dissipation and/or dispersion causes the power-law spectral
profile to be broken at the corresponding scale, leading to a
steeper segment of the magnetic PSD beyond the inertial range. It
is found that the magnetic PSD between the ion kinetic scale and
the electron kinetic scale can be approximated by a third power-
law function with a power index between −2 and −4 (Leamon
et al. 1998; Alexandrova et al. 2009; Sahraoui et al. 2009; Smith
et al. 2012). This range is called a secondary inertial range or
electron inertial range, where the electron behavior can still be
approximated through a fluid description (Biskamp et al. 1996;
Li et al. 2001; Galtier & Bhattacharjee 2003). At scales close to or
even smaller than the electron kinetic scales, there is a dispute
regarding whether the turbulence PSD is another steeper

power-law function or a stretched exponential function (Sahraoui
et al. 2010; Alexandrova et al. 2012).
The spectral break between the inertial range and the

dissipation range is often interpreted as the onset of dissipation.
On the other hand, the spectral break may be related to the
transition to a dispersive behavior of the associated modes
(around kρp∼1). Both dissipation and dispersion can give rise
to the break; however, it is difficult to determine the
contribution of these two mechanisms to the position and
strength of the break. For plasma turbulence consisting of
kinetic waves, the dispersive behavior of kinetic waves will
influence both the magnetic and electric PSDs. For example,
the dissipation range of magnetic PSD with kinetic Alfvén
turbulence and whistler turbulence are steeper than their MHD
counterpart, with the power spectral index predicted to be
around −7/3 and −2.5, respectively (Biskamp et al. 1999;
Galtier 2006; Schekochihin et al. 2009; Narita & Gary 2010;
Zhao et al. 2016). The electric field fluctuations are enhanced at
smaller scales, leading to a shallower PSD with a spectral index
predicted to be about −1/3 and −1/2. Such different behaviors
of magnetic and electric PSDs have been observed in solar
wind and magnetosheath kinetic turbulence, suggesting the role
of dispersive behavior in altering the polarization relationship
between magnetic and electric field fluctuations and the
consequent scaling difference between the magnetic and
electric PSDs (Bale et al. 2005; Matteini et al. 2017). The
transition from a linear-in-k to a nonlinear-in-k dispersion
relation from the MHD to the kinetic regime also depends on
various plasma parameters, e.g., the proton and electron plasma
beta, the electron to proton temperature ratio, and so on
(Boldyrev et al. 2015). However, it is still a challenge for the
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field to distinguish the role of dispersion in shaping the PSD
profile from the effect of dissipation.

Solar wind turbulence, especially in fast streams, is
anisotropic in both scaling and the level of the reduced PSDs,
which are obtained by sampling the turbulence in different
directions with respect to local background magnetic field
(Horbury et al. 2008; Podesta 2009; Luo & Wu 2010). The
nature of the reduced PSD is still unclear, e.g., the existence of
the “slab + 2D” distribution (Matthaeus et al. 1990; Bieber
et al. 1996) or the “pure critical balance” distribution of power
in wavevector space (Goldreich & Sridhar 1995). Some
endeavors have been made to reconstruct the multidimensional
PSD in wavevector space by applying the tomography method
based on the projection-slice theorem to single-spacecraft data
(He et al. 2013) or the k-filtering wave-telescope technique
to four-spacecraft measurements from Cluster (Sahraoui
et al. 2010; Narita et al. 2011). A magnetic PSD distribution
of “slab + oblique ridge” is found in fast solar wind streams the
inner heliosphere between 0.3 and 1 au (He et al. 2013). At ion
kinetic scales just beyond the MHD regime, two types of
kinetic waves are found to be consistent with the two
components of the magnetic helicity angular spectrum, where
quasi-perpendicular kinetic Alfvén waves and quasi-parallel
ion-cyclotron waves are the major and minor wave populations,
respectively (He et al. 2011, 2012a, 2012b; Telloni et al. 2012;
Roberts & Li 2015). Therefore, there are angular dependencies
in both the PSD in the MHD regime and the wave-mode nature
in the ion kinetic regime. Moreover, the cascaded energy flux is
anisotropic with the perpendicular rate greater than the parallel
cascade rate, especially when the solar wind is noncompressive
(MacBride et al. 2008). This anisotropy is weaker when the
solar wind is more compressive (Hadid et al. 2017). However,
the angular dependence of the spectral break between the MHD
scales and ion/sub-ion kinetic scales is still unknown, and the
answer to this question will cast beneficial insight into the onset
process of dissipation and/or dispersion of kinetic turbulence.

The radial evolution and β-dependence of the spectral break
position have recently been investigated. Using the magnetic field
measurements from the Ulysses and Messenger spacecraft, Perri
et al. (2010) studied the radial evolution of the spectral break near
the ion scale, but did not find a significant decrease of break
frequency along with the increasing heliocentric distance. This
result is consistent with a later study based on Helios data between
0.3 and 0.9 au (Bourouaine et al. 2012). It was proposed that the
spatial scale corresponding to the break frequency seems to follow
the proton inertial length (dp), when taking into account the two-
dimensional nature of the magnetic fluctuations and assuming the
wavevector k to be in the plane of Vsw (solar wind velocity) and
Bbg (background magnetic field). However, as pointed out by
Bruno & Trenchi (2014), the Messenger spacecraft did not
provide solar wind plasma data and was thus unable to determine
if the solar wind conditions encountered byMessengerwere of the
same type as those measured by Ulysses. To make the analysis
result more credible, Bruno & Trenchi (2014) chose intervals
when the Messenger, WIND, and Ulysses were almost aligned in
the radial direction, and then analyzed the magnetic PSD at
different locations. As a result, they found that the spectral break
frequency reduces significantly with increasing distance. More-
over, the trend is consistent with that of the scale corresponding to
proton cyclotron resonance, if the isotropy assumption is imposed
on the proton thermal state. However, invoking proton cyclotron
damping to explain the spectral break cannot cover the whole

picture, since quasi-parallel Alfvén cyclotron waves only
contribute a minor part to the reduced PSD in observations.
Ion plasma βp, which is a measure of the ratio between ion

thermal pressure (Pth,p) and magnetic pressure (PB), is also the
squared ratio of the two ion scales ( dp p p

2b r= ( ) ). Therefore
it is also interesting to see the behavior of the spectral break
position ( fb) as a function of βp. It is found that fb approaches
f

pr
at very large βp and approaches fdp

at very small βp, where
f V 2 psw

p
pr=r ( ) and f V d2 pd swp

p= ( ) is the frequency in the
spacecraft frame corresponding to the spatial scales satisfying
kρp=1 and kdp=1, respectively (Chen et al. 2014). In the
range with β between 0.1 and 1.3, fb/fdp is found to be of order
0.5, and f fb pr

increases from 0.2 to 0.5 (Wang et al. 2018). In
βp,⊥∼1 plasma, the break is reported to be associated with the
proton cyclotron resonance scale, kc=1/(ρp+dp) (Woodham
et al. 2018). The analysis by Smith et al. (2012) for βp>1
solar winds shows no dependence of the spatial spectral break
scale on θRB. The fb position cannot be solely attributed to the
dispersion relation of kinetic Alfvén waves, especially in cases
with βi=1 and βe=1. The dissipation of waves/turbulence
should be taken into account when considering the physical
process underlying the spectral break. In 2D hybrid simula-
tions, the spatial scale ratios between the spectral break scale
(lb) and proton characteristic scales, lb/dp and lb/ρp, are found
to have an increasing and a decreasing trend with increasing βp,
respectively (Franci et al. 2016). The spectral break scale lb in
simulations is smaller than in observations, which means that
the onset of dispersion/dissipation appears at shorter scales in
the simulation. Such a difference indicates the complexity of
real solar wind turbulence, which cannot be fully reproduced
by 2D hybrid simulations. Furthermore, in 2D hybrid
simulations, the PSD of density fluctuations is less than the
PSD of fluctuations in the normalized parallel magnetic-field
component at low β∼0.2, while the two are comparable to
one another at intermediate and higher β (Cerri et al. 2016).
These features suggest the dominance of whistler dynamics
over KAW dynamics in the regime of lower β, and a switch to
the opposite regime at intermediate and higher β (Cerri
et al. 2016).
Whether the spectral break position ( fb) changes with the

angle between the radial direction and the local mean magnetic
field direction (θRB) is the aim of this work. The spectral break
positions of the quasi-parallel and quasi-perpendicular PSDs
can be distinguished in this way, which is helpful for the
anisotropy diagnosis of underlying dissipation or/and disper-
sion mechanisms. In Section 2, we propose a novel method to
fit the dual-power-law PSD profiles with a composite function
in one step and automatically locate the transition position of
the dual-power-law profiles. We then apply this method to a
case of solar wind turbulence, illustrating the success of this
method in fitting the dual-power-law PSDs and locating the
spectral break positions at different θRB. In Section 3, a
statistical study based on 20 events is conducted, the result of
which indicates the angular independence (isotropy) of fb.
Section 4 is reserved for summary and discussion.

2. A Method to Fit the Dual-power-law Spectral Profile and
to Locate the Spectral Break Position

To locate the position of the spectral break, the first step is to
find a function that can fit the dual-power-law PSD profile well.

2
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We propose a function as a sum of two modified power laws:

PSD f A f g f A f g f , 11 1 2 2
1 2= +a a- -( ) ( ) ( ) ( )

g f e , 2f p
1

3= -( ) ( )

g f e , 32 f p
1
3= -( ) ( )

where A f n 1, 2n
n =a- ( ) represent the two power functions.

The subscript n=1 is for the inertial range, and n=2 is for
the dissipation range. An relates to the level of the spectra, and
αn is the spectral index. The parameter p is another fitting
parameter that determines the position of the break ( fb). g1( f )
and g2( f ) are two auxiliary functions that control the
dominance of the two power functions in two different
frequency ranges, respectively. g1( f ) is close to 1 over a
frequency lower than fb and approaches 0 in higher frequency
ranges beyond fb. g2( f ) shows the opposite behavior. These
two functions help to shape the fitting function and generate
different spectral indices in different frequency ranges. For
example, in the inertial range, the second term of the function is
negligible, and the PSD profile is mainly described by the first
term. In the vicinity of the break, the two terms have the same
order of magnitude, which make the profile of the fitting
function curved.

To get the position of the break, the curvature at every
discrete frequency point of the fitting line is calculated. The
formula of the curvature reads

log PSD

1 log PSD
, 4

2 3
2

k =


+ ¢
∣ ( ) ∣

( ( ) )
( )

where flog PSD log PSD log¢ = D D( ) ( ) ( ) and log PSD ¢¢ =( )
flog PSD logD ¢ D( ) ( ) are the first- and second-order deriva-

tives in logarithmic coordinates, respectively. Curvature for a
straight line equals 0 and becomes larger when the line is more
curved. The break point of the PSD is supposed to have the
maximum curvature, where the two power-law functions
connect. Therefore, the point with the maximum curvature is
selected as the break point. The uncertainty of the identified
break position is estimated with the standard deviation of a
sequence of fb,i (i=1,K, N), which are obtained by fitting and
locating the PSD profiles N times with the discrete frequencies
being randomly resampled N times. We set the value of N to
200. At every step, two points in the frequency domain are
randomly chosen and dropped, leaving the PSDs at the other
frequencies to be fitted. This method to estimate the fb
uncertainty is called “bootstrap” method in statistics. We note
that a modest change of the power index in g1( f ) and g2( f )
does not affect the estimated position of the break point.

3. Applying the Dual-power-law Fitting Method to a Case
of Fast Solar Wind

We use the in situ magnetic field measurements obtained
from theWIND spacecraft, which is orbiting the Sun around the
solar-terrestrial Lagrangian L1 point. The magnetic field data
was sampled at a time cadence of 0.092s by MFI (Lepping
et al. 1995). We select 20 cases of high-speed solar wind

streams between 1995 and 1996 for a statistical study of the
angular dependence of the spectral break position. Our
selection is based on the following criteria: (1) flow speed is
greater than 550 km s−1; (2) density and magnetic field strength
is stable ( n n B B, 0.2d dá ñ á ñ <∣ ∣ ∣ ∣ ) for more than 24 hr;
(3) proton plasma β is between 0.7 and 1.3; and (4) no ICME
event is embedded fully or partially within the time intervals.
These criteria guarantee that potential common features stand
out to be discerned and explored by means of our statistical
study.
We first choose data of a fast solar wind stream in the time

range between 1996 March 12 and 13. Trace power spectral
densities at 25 discrete frequencies from 0.01 to 1.4 Hz in the
spacecraft frame are calculated with the help of a wavelet
transform (Torrence & Compo 1998). The reason for the upper
limit of the frequency being set below the Nyquist frequency
(∼5.4 Hz) is to avoid the contamination of the PSD from the
noise floor as well as the aliasing effect at the higher frequency
end. The profile of PSD as calculated from the wavelet
transform without distinguishing different θRB angles is plotted
in Figure 1 (see the sequence of small black hollow squares in
the figure). The dual-power-law shape of the PSD profile with a
spectral break located in between can easily be recognized
by eye.
To further quantify the PSD profile, we employ the method

described in Section 2 to fit the calculated PSD. The fitting
result (the dark-blue dashed line) matches well with the
measured PSD. The green line and the cyan line represent the
PSD profiles for the two terms in the lower and higher
frequency ranges respectively. As an output of the dual-power-
law fitting method, the spectral indexes in both the inertial
range and the dissipation range are obtained simultaneously,
which gives values of −1.63 and −3.16 for the example case
presented here. The spectral break position as defined through
the maximum curvature is labeled with a blue solid square. For
comparison, three frequencies in the spacecraft frame, which
correspond to three different spatial scales under Taylor’s
frozen-in hypothesis ( fSC=VSW/λ, λ=2π/k), are also
labeled. The frequency ( fρ) for the spatial scale related to the
proton gyroradius (kρp=1) is labeled with a red solid triangle,
with the proton gyroradius ρp being calculated with the proton
temperature. The red solid pentagram represents the frequency
( fd) for the spatial scale related to the proton inertial length
(kdp=1). The frequency ( fc) for the spatial scale roughly
satisfying the cyclotron resonance condition (kc=Ωp/(VA+
Vth), kc(ρp+dp)=1) (Leamon et al. 1998) is plotted as a red
solid square. The data for calculation are from MFI (for
magnetic field) and PESA-low/3DP (for proton density and
temperature; Lin et al. 1995) on WIND. Another characteristic
frequency is the proton gyrofrequency ( fg) as labeled with a red
solid circle in the figure. It can be seen that fc is closest to fb,
while fg is much lower than fb, while fρ and fd are obviously
beyond fb.
As one important aspect of the turbulence anisotropy study,

it is necessary to investigate if the onset of dissipation and/or
dispersion is anisotropic in wavevector space. In other words,
we investigate if the spectral break position of the reduced PSD
depends on and changes with θRB, the angle between the local
mean magnetic field direction and the radial direction
(approximated to sampling direction around and beyond
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1 au). For this objective, we plot and fit the PSD profiles at
different θRB. and thereby automatically obtain the spectral
break positions of the PSD profiles.

We group the wavelet spectra of the magnetic field
fluctuations at each period ( B t p,d ˜ ( )) into nine bins according
to the their time-dependent local θRB(t, p) at the corresp-
onding period p. Each bin contains data with the corresp-
onding θRB located within 10°. For instance, the first bin
contains the data with θRB from 0° to 10°, and the last bin for
θRB from 80° to 90°. The nine PSDs of the nine θRB bins
are constructed from the redistributed wavelet spectra. The
nine PSD profiles are plotted in Figure 2. The profile at the
bottom is for the bin of θRB between 0° and 10°, and the top
one for the bin of θRB between 80° and 90°. To compare the
PSDs with different angles in one figure, the nth PSD profile
is offset with its level being multiplied by 10n. It can be seen
that the quasi-perpendicular spectra are stronger than the
quasi-parallel spectra. We note that θRB is calculated as

R B R Barccos (∣ · ∣ ∣ ∣∣ ∣), so that θRB outside of 90° appear in
the angle range of [0°, 90°].

Figure 2 shows that the spectral break position does not
change significantly with increasing θRB. The independence of
fb on θRB indicates an isotropy of the onset of dissipation and/
or dispersion in kinetic turbulence. The isotropy of fb is an
interesting new result, which makes it remarkable when
considering the anisotropy of both power level and spectral
index as discovered in previous works (Horbury et al. 2008;
Podesta 2009). The anisotropy of the power level and spectral
index in our work is similar to the anisotropies in these

previous studies. The spectral index in the parallel direction is
about −1.9, and the spectral index in the perpendicular
direction is about −1.6, which indicates the possible existence
of critical balance. The integrated power level is also greater in
the perpendicular direction than in the parallel direction.
Figure 3 further illustrates the angular profile of fb, which stays
around fc (∼0.5 Hz) throughout the whole range of θRB. It can
be seen that fb is well below fd and fρ and well above fg, with no
error bars of fb crossing the horizontal lines of fd, fρ, and fg in
Figure 3. The uncertainty of the spectral break position (the
length of the error bar) is estimated with the bootstrapping
procedure. The bootstrapping method applied here involves
three steps: (1) we obtain a new discrete data set for the spectral
profile with two random frequency points being taken away
from the original data set and fit it with the dual-power-law
function, providing the spectral break position at the maximum
curvature; (2) we repeat the first step 199 times with different
points removed from the data set; (3) we calculate the standard
deviation based on the 200 spectral break positions obtained in
the first and second steps. The uncertainties of the characteristic
frequencies are also illustrated in Figure 3. The characteristic
frequencies’ uncertainties are estimated from error propagation
of the physical variables listed in the upper-right corner of
Figure 1. We see that the spectral break frequencies at various
angles fall within the uncertainty range of the cyclotron-
resonance frequency.
As to the systematic uncertainty of the break position, we

consider an alternative definition by adopting the maximum of
the second derivative (d

d f

lg PSD

lg

2

2 ) to locate the spectral break. The

Figure 1. Trace PSD of the high-speed solar wind on 1996 March 12 and 13, and the fitting result based on a dual-power-law fitting function. The original data to be
fitted are represented as an array of black hollow squares, while the fitting result is plotted with a dark-blue dashed line. The two terms in the fitting function, are
illustrated separately with a green dashed line and a cyan dashed line. The spectral break position ( fb) is determined by estimating the maximum curvature of the fitted
PSD curve, and marked with a blue solid square. For comparison, we mark four additional frequency positions ( fg=qB/(2πmp), fρ, fd, and fc) with a red solid circle, a
red solid triangle, a red solid star, and a red solid square, respectively. The wavenumber k(=2πf/Vsw) corresponding to fρ, fd, and fc is determined by kρp=1,
kdp=1, k(ρp+dp)=1, respectively. It can be seen that fb is closer to fc than to any of the other characteristic frequencies.
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newly located break positions agree well with the break
positions determined with our original method.

As complementary evidence, we show the local slope of the
spectra as functions of the frequency for different angles in
Figure 4. We identify the part of the spectrum with a slope less
than 2.0 as the inertial range (blue part in Figure 4), and the part
with a slope greater than 2.5 as the dissipation range (color
coded with yellow and red). The transition at which the
contours of the slope distribution are most concentrated,
indicating a rapid change of the slope value over a short
frequency range, represents the spectral break position. We find
that the break position changes only slightly with angle.
Additionally, the absolute value of the slope in the dissipation
range increases as the angle increases, with α>4 at θRB near
0° and α<3 at θRB near 90°. We note that the secondary

increase of the slope at small angle and high frequency may be
due to noise.

4. Statistical Study of the Angular Independence of the
Spectral Break Position

To further check if the finding of the angular independence
of spectral break position is a common phenomenon in the fast
solar wind, we perform a statistical study of fast streams as
measured by the WIND spacecraft between 1995 and 1996. We
select fast-stream cases according to the criteria described in
the previous section. Twenty cases of high-speed solar wind are
selected for further study. For every case, we conduct the same
analysis procedure: (1) we obtain the reduced PSDs at different
θRB; (2) we apply the dual-power-law fitting method to the
PSDs with the frequency covering both the inertial and
dissipation ranges; (3) we estimate the spectral break position
based on the maximum curvature of the fitted dual-power-law
profile. In this way, we obtain the spectral break frequency fb at
different θRB for every case.
We then determine the ratios of the frequencies fρ, fd, fc, and

fg to the spectral break frequency ( fb) as functions of θRB
and plot them in Figure 5. The mean values of fρ/fb, fd/fb, fc/fb,
and fg/fb as functions of θRB are plotted as a red long-dashed
line, a red dotted–dashed line, a red solid line, and a red short-
dashed line, respectively. The lower and upper envelopes of
these ratios at every θRB are connected and illustrated as areas
filled with light blue, light green, light gray, and dark green
colors. The reference line for fb/fb is located within the
envelope area of fc/fb, yet well below the lower envelopes for
both fρ/fb and fd/fb as well as above the upper envelope for
fg/fb. This statistical study reveals two findings with respect to
the spectral break in the fast solar wind: (1) fb is mostly
independent of θRB; and (2) fb is close to fc throughout the
whole range of θRB. In the case of intermediate plasma β
(β∼1), the difference of scales for different predictions is of
order of unity. In these cases, it is necessary to acquire further
evidence as to which mechanism dominates the spectral slope
of the PSD.

5. Summary and Discussion

5.1. Summary of the Observational Analysis Results and Their
Relation to Existing Theories

In order to learn if the onset of dissipation and/or dispersion
is isotropic at the ion kinetic scale, we have studied the relation
between the angle (θRB) and the position of the spectral break
between the inertial and dissipation ranges. We first calculate
the reduced PSDs of magnetic field turbulence corresponding
to different θRB based on the measurements from the WIND/
MFI in long-lasting fast streams. We qualify the PSD profiles
involving both inertial and dissipation ranges by developping a
fitting method with a dual-power-law fitting function. The
spectral breaks are located at the frequencies of maximum
curvature in the fitted profile. The spectral break frequency in
the spacecraft reference frame is almost independent of θRB.
Such independence suggests that the onset of dissipation
and/or dispersion is isotropic with respect to the local mean
magnetic field direction. This is an interesting and unantici-
pated result considering the anisotropy of the turbulence power
level and scaling index.

Figure 2. PSDs in different angle intervals of θRB for the same case as in
Figure 1. The lowest line represents the PSD in the interval θRB=[0°, 10°]
and the top line represents the PSD in the interval θRB=[80°, 90°]. The
amplitudes are multiplied with an offset of 10 for each θRB to separate the
spectra at different θRB. We find that the spectral break position fb is almost
independent of θRB.
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Furthermore, we find that fb is consistent with the value of fc
at all angles. Alfvén cyclotron waves in the quasi-parallel
direction of propagation are subject to the dissipation through
ion-cyclotron resonance. In the reference frame of proton
motion with a field-aligned parallel speed of vth, the Doppler
shifted wave frequency can approach the proton gyrofre-
quency, ω+kPVth=Ωp, where Ωp is the proton gyrofre-
quency. The corresponding kP satisfies the condition of
kP(dp+ρp)=1, which is also reported by Woodham et al.
(2018) in their independent work.

However, the dissipation of quasi-parallel Alfvén waves cannot
be responsible for the location of the spectral break at a similar
scale in the reduced PSD in the quasi-perpendicular direction. For
quasi-perpendicular kinetic waves with k⊥?kP, the dispersion
relations are k V k T T2 12 2

A
2 2

p
2

p p ew r b= + +^ [ ( )] for kinetic
Alfvén waves, and k V k d2 2

A
2 2

p
2w = ^ for whistler waves, (Chen &

Boldyrev 2017). We note that the normalized terms kρp or kdp are
introduced into their dispersion relation, respectively, playing a
role in regulating the dispersion from a linear frequency-to-
wavenumber relation to a nonlinear frequency-to-wavenumber
relation. As a result, the electric field disturbance δE is
proportional to k⊥ρpVAδB or k⊥dpVAδB, and the velocity
disturbance δV scales with k⊥ρpVAδBB0, which hence changes
the eddy turnover time τ by altering the δV⊥ fluctuation,
τ∼l/δV, from being proportional to 1/k⊥ to being proportional
to k1 2

^. In this way, the power-law scaling index for the PSD of
δB changes from about −5/3 in the inertial range to about −7/3
in the kinetic range, causing a spectral break around k⊥ρp∼1 for
kinetic Alfvén waves or k⊥dp∼1 for oblique whistler waves,
respectively. One type of wave mode alone is unable to explain
the observed spectral break position. Moreover, the dispersion
effect introduced by kinetic Alfvén waves or oblique whistler
waves alone is not sufficient to explain the complex physics
around the spectral break. The dissipation effect of kinetic waves
needs to be taken into account for the spectral profile, e.g.,

electron and proton Landau damping, transit-time damping, as
well as the dissipation by nonlinear stochastic perpendicular
heating. The predicted spectral break position as obtained from the
dissipation of dispersive kinetic waves in theoretical modeling
(Howes et al. 2008; Franci et al. 2016), however, is still not fully
consistent with the observed spectral break position. Furthermore,
there are small located enhancements in the quasi-parallel PSDs as
shown in Figure 2. These enhancements indicate the local
injection of energy, which may be due to the local action of
instabilities, although we cannot exclude an instrumental effect as
their source.

5.2. An Interpretation: Spatial Scale Estimate for the Onset of
the Breakdown of the Magnetic Frozen-in Condition

At kinetic scales, in contrast to the MHD regime protons,
and electrons are successively decoupled from the magnetic
field lines. This demagnetization of the plasma at kinetic scales
is also responsible for magnetic reconnection. The Generalized
Ohm’s law provides the framework for further analysis of the
breakdown of the frozen-in condition:

E V B J B Pne ne . 5p e´ = - ´ + -( ) · ( ) ( )

The Hall term (J B ne´ ( )) and the term for the divergence
of the electron thermal pressure tensor ( P nee- · ( )) are
two important terms to break the magnetic field frozen-in
condition. Both whistler wave dynamics and kinetic Alfvén
wave dynamics, which are mainly connected with the Hall term
and the pressure-tensor-divergence term, respectively, are
related to the dissipation region of the reconnection current
layer. Therefore, the width of a reconnection current sheet is in
principle determined by the ion kinetic scale, e.g., dp or/and ρp,
although the relation between the current sheet width and the
ion kinetic scales has yet to be determined.

Figure 3. Profile of fb as a function of θRB. We employ the bootstrap method to get the mean and standard deviation values of fb in each θRB interval. The black
diamonds and error bars are displayed to denote the mean and standard deviation of fb. As a reference, the other four characteristic frequencies, fg, fc, fd, and fd, are
marked as four dashed lines from bottom to top. The standard deviations of these characteristic frequencies are marked as red arrows or red dotted lines.
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In some sense, the dissipation of magnetic energy associated
with kinetic waves is related to the break down of the magnetic
frozen-in condition. On the other hand, the modification of
dispersion due to kinetic effects is also related to the
decoupling between the fluid species and their individual
demagnetization. Therefore, we now investigate the transition
between the frozen-in and unfrozen-in states in order to
understand the physics of the spectral break, which involves
both dissipation and dispersion effects. In Equation (5), if the
last two terms on the right-hand side (RHS) dominate over the
first term on the RHS, the protons decouple from the electrons
and demagnetize. The relation involving the three terms can be
approximated as

VB
B

ne

T

T

nm V

ne
, 6

2

0

e

p

p th,p
2


m D

+
D

( )

where V is the proton bulk velocity fluctuation at the spatial
scale Δ. This requires the spatial scale Δ in Equation (6) to
fulfill the following inequality condition:

B

neV

T

T

m V

eBV
, 7

0

e

p

p th,p
2


m

D + ( )

which can be further grouped into three categories according to
the value of the proton plasma beta:
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In the situation of extremely low plasma beta, the ratio of
average Te to average Tp is about 10 in the solar wind (Chen
et al. 2014). The large value of Te/Tp causes the ρs scale (ion
sound gyroradius, k T ms B e p pr = W ) to be larger than ρp.
However, in the case of low beta, the spectral break is mainly
controlled by the ion inertial length (dp) rather than ρs or ρp.
For the cases with extremely high plasma beta, the ratio Te/Tp
is about 2 on average (Chen et al. 2014), and the scales do not
differ significantly. Therefore, the above approximate formulas
are comparable (though not fully consistent) with the results
illustrated in this work based on intermediate βp and the results
for βp?1 and βp=1 in Chen et al. (2014). Nevertheless, the
deviation of Te/Tp from 1 in the intermediate and high plasma
beta cases, still complicate the comparison between observa-
tions and theoretical predictions. We note that this is just a
rough estimate of the spectral break position by regarding it as
the onset of the breakdown of the frozen-in condition and
demagnetization, under which condition the dissipation and
dispersion of turbulence begin. This idea is essentially similar
to the concepts explored in previous works. Here we
incorporate both the dispersion and dissipation into a unified
description, in order to facilitate the discussion of the spectral
break formation.

5.3. Roles of Dispersion and Dissipation in PSD Deformation,
and the Relation to the Breakdown of the Frozen-in Condition

in Wavenumber Space

In a one-dimensional model of the turbulent cascade, the
energy transfer rate ò is related to the turbulence amplitude in two
ways: (1) through definition based on dimensional analysis,

Figure 4. Distribution of absolute local spectral index in the 2D space of θRB and period. The transition of absolute spectral index from less than 2 (blue color) to more
than 2.5 (green, yellow, and red colors) occurs roughly around a constant period over the whole range of θRB. This suggests an isotropy of the spectral break regardless
of the θRB value, although the spectral scaling anisotropy is obvious in the dissipation range below the spectral break.
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(2) by enforcing an isotropic evolution in wavenumber space:

k C
B k

k v k1
, 111

3 2
2

 d
d

= -( ) ( )
( ( ))

( )

and

B k

t
k

k

k
B k S k2 , 12

2
2d

gd
¶

¶
= -

¶
¶

- +
( ) ( ) ( ) ( ) ( )

where γ represents the energy damping rate, S(k) is a source
term for the turbulence driving source, and C1 is a constant. By

assuming v k R k B kA*d d= ( ) ( ) ( ) and then substituting the
expression of δB(k) with ò(k) into Equation (12), we obtain the
following integral formula after some calculations,

k C C
k

k

k
dkexp 2

1
, 13

k

k

input 1
3 2

2
input

  ò
g
w

= -
⎧⎨⎩

⎫⎬⎭( ) ( )
( )

( )

where the subscript “input” represents the outer scale of energy
input (C2 is also a constant). It can be seen in Equation (13)
that, both the dispersion ω(k) and dissipation γ(k) are
incorporated into the cascading rate formula, thereby adjusting
the value of the cascade rate along with k. Finally, the formula
for the PSD(δB(k)) is written as

B k
B k

k
C k k R k

PSD

, 14

2

1
2 3 5 3

A
1 3*

d
d

~

= - -

( ( )) ( )

( ) ( ) ( )

where the PSD is steeper if ò(k) decreases with k or/and RA*
increases with k. According to Equation (13), a decreasing
trend of ò(k) is either associated with an increasing trend of γ(k)
or a decreasing trend of ω(k). Therefore, in order to understand

the PSD variation in k, we require the distribution of ω(k), γ(k),
and RA*, with the first and third quantities being related to the
dispersion and the second term corresponding to the dissipa-
tion. We note that Equations (11)–(14) are similar to those by
Howes et al. (2008). The variable RA* can be regarded as the
Alfvén ratio in the MHD regime, although it loses its meaning
in the kinetic regime, where RA* is related to Ved rather than Vid .
As an example, we study the dispersion, dissipation, and

demagnetization (breakdown of frozen-in condition) of Alfvén
waves and their counterparts at kinetic scales. The dispersion
relation, damping/growth rate, and transport ratios of different
variables (e.g., Ed , Bd , Vid , Ved , and so on) are calculated with
linear Vlasov–Maxwell theory, using the numerical code
“NHDS” (Verscharen et al. 2016; Verscharen & Chandran 2018).
Figures 6(a) and (c) show the effect from dispersion, which
exhibits an increase of k⊥. On the other hand, Figure 6(b) shows
that the damping rate increases along the kP direction. Both
dispersion and dissipation illustrate anisotropic but different
patterns in wavenumber space. Figure 6(d) describes the
demagnetization of ions ( E E v BIonFrame iond d d= + ´ , where
E 0IonFramed = for the frozen-in condition). The demagnetization
of ions and the decoupling from electrons introduce effects of
dispersion and dissipation into the Alfvén waves. Therefore,
Figure 6(d) represents the combined effects of dispersion and
dissipation, showing a quasi-isotropy (though not exact isotropy)
in wavenumber space compared to Figures 6(a–c).
The break was previously expected to occur at a lower

frequency in the parallel direction than in the perpendicular
direction, based on the anisotropic pattern of turbulence power
(Chen et al. 2010). It is interesting that the measurements here
are different from these expectations, which calls for a
convincing physical explanation for this phenomenon. Looking

Figure 5. Statistic result of the frequency ratios between the characteristic frequencies and break frequencies in all of the 20 cases under investigation. The colored
polygons from top to bottom are bounded by the lower and upper envelops for fρ/fb, fd/fb, fc/fb, and fg/fb. Darker colored areas indicate overlapping areas. Red thin
lines of different types denote the mean values of each ratio. The reference level of 1 (red solid straight line) falls in the gray-colored polygon ( fc/fb), which suggests
that fb is independent of θRB and the corresponding wavenumber k is determined by k(ρp+dp)=1.
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at the distribution of EIonFramed , in wavenumber space (kP, k⊥) is
just a preliminary effort. We admit that the occasional existence
of a weak enhancement in the parallel spectrum around the
break scale complicates the physical scenario for the break
formation. We speculate that the weak enhancement may be
caused by the injection of local power due to kinetic
instabilities. Regarding the breakdown of the frozen-in
condition and its role for the spectral break, both dissipation/
damping and instability/growing of kinetic waves are asso-
ciated with nonzero EIonFramed , and hence result in a spectral
deformation at a similar scale. The enhancement if existent
usually appears at angles of less than 20°. For the mostly
isotropic pattern beyond 20°, the underlying physical mech-
anism may be unrelated to the instability-induced local power
injection. The 1D equation for the turbulence power as
presented above may not be appropriate for the dynamics in
the parallel direction, along which the energy transfer may
mostly occur through diffusion rather than advection in

wavenumber. In the future, it is necessary to investigate and
improve the evolution model (advection, diffusion, injection,
and dissipation) for the PSD in multidimensional wavenumber
space (Cranmer & Van Ballegooijen 2003), in order to describe
both the anisotropy of the power level and the isotropy of the
power break position.
For turbulence with most energy located at large oblique angles,

E k k,IonFramed ^( ) would be enhanced at large θkB compared to
its values at small θkB. As a consequence, E k k,IonFramed ^∣ ( )∣

E kFullAngled∣ ( )∣ tends to become more isotropic in turbulence with
higher anisotropy than shown in Figure 6(d). Therefore, weak
anisotropy of E Ek k k,IonFrame FullAngled d^∣ ( )∣ ∣ ( )∣ due to weaker
dispersion than dissipation on demagnetization can be compensated
and approach isotropy by the dominance of energy at large θkB.
The contribution of energy anisotropy to the isotropy of the spectral
break will be investigated in our future work. Again, we emphasize
that more observational and theoretical studies are needed to

Figure 6. Dispersion relation, dissipation rate, and deviation from the frozen-in condition of Alfvén waves and their counterparts in the range of sub-ion scales. (a)
Distribution of normalized ω in (kP(ρp+dp), k⊥(ρp+dp)) space (2D-k space). (b) Distribution of normalized damping rate in 2D-k space. (c) Distribution of transport
ratio between δ Ve and δ B in 2D-k space. (d) Distribution of normalized δ Eion frame in 2D-k space. We note the relatively quasi-isotropic pattern in panel(d) compared
to panels (a–c). The calculation is conducted in linear Vlasov–Maxwell theory for a plasma only containing protons and electrons (βp=βe=2).
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understand the physics responsible for the angle-independent
position of the spectral break, which is close to the scale
corresponding to k(dp+ρp) near 1 au.
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