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ABSTRACT

The interaction between Alfvén-wave turbulence and the background solar wind affects the cross helicity
( v Bd x3 ·ò ) in two ways. Non-WKB reflection converts outward-propagating Alfvén waves into inward-
propagating Alfvén waves and vice versa, and the turbulence transfers momentum to the background flow. When
both effects are accounted for, the total cross helicity is conserved. In the special case that the background density
and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation
can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a
non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy
conservation) does not hold when the background varies in time.
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1. INTRODUCTION

Approximately fifty years ago, Parker (1965) and Coleman
(1968) suggested that waves and turbulence play an important
role in the heating and acceleration of the solar wind. Since that
time, observational, theoretical, and numerical studies have
produced mounting evidence that supports this suggestion. For
example, in situ measurements at heliocentric distances
exceeding 0.3 AU show that turbulent fluctuations pervade
the interplanetary medium (Goldstein et al. 1995; Bruno &
Carbone 2005) and that most of this turbulence consists of
fluctuations that propagate away from the Sun, consistent with
a solar origin (Belcher & Davis 1971; Tu & Marsch 1995).
Remote observations from the Solar Optical Telescope on the
Hinode satellite reveal the presence of Alfvén-wave-like
motions in the low corona with amplitudes sufficient to power
the solar wind (De Pontieu et al. 2007). Faraday rotation of
radio transmissions from the Helios satellite are also consistent
with theoretical models in which the solar wind is powered by
an Alfvén-wave (AW) energy flux (Hollweg et al. 2010).

In order for AW turbulence to heat the solar wind, AW
energy that is initially in large-wavelength fluctuations must
“cascade” to smaller wavelengths, at which the fluctuations
can efficiently dissipate. This cascade process relies upon
the interaction between counter-propagating AWs (Iroshni-
kov 1963; Kraichnan 1965). Because the Sun launches only
outward-propagating waves, solar-wind heating by AW
turbulence requires some source of inward-propagating AWs.

One of the most important sources of such inward-
propagating waves is non-WKB reflection (Heinemann &
Olbert 1980; Velli 1993; Hollweg & Isenberg 2007). Photo-
spheric motions have such long timescales that they launch
AWs that have radial wavelengths within the corona and solar
wind that can be comparable to or greater than the heliocentric
distance. For such waves, the wave phase velocity varies
appreciably over one wave length, which causes the AWs to
undergo partial reflection as they propagate away from the Sun.

A number of authors have conducted theoretical and
numerical investigations of solar-wind turbulence driven
by non-WKB AW reflection (e.g., Zhou & Matthaeus 1989;
Velli et al. 1989; Matthaeus et al. 1999; Dmitruk et al. 2002;

Cranmer & van Ballegooijen 2005; Verdini & Velli 2007;
Chandran & Hollweg 2009; Verdini et al. 2012; Perez &
Chandran 2013). These authors took the background solar wind
to be steady, and several of them made use of a conservation
law first obtained by Heinemann & Olbert (1980), which
Heinemann & Olbert (1980) interpreted as a non-WKB
generalization of wave-action conservation. In this paper, we
show that this conservation relation does not hold in the case of
a time-dependent background. We also show that this
conservation relation can be obtained by combining the
equations of cross-helicity conservation and energy conserva-
tion. To the best of our knowledge, the equation of cross-
helicity conservation has not been applied previously to
reflection-driven AW turbulence in the solar wind. Because
the equation of “non-WKB wave-action conservation” can be
obtained from the equation of cross-helicity conservation, and
because cross helicity is conserved regardless of whether the
background varies in time, the equation of cross-helicity
conservation in some sense generalizes the equation of “non-
WKB wave-action conservation” to the time-dependent regime.
We note that although we allow the flow velocity and density
to vary in time, our analysis is limited to the case in which the
background magnetic field is fixed.
In Section 2, we describe and adopt a standard set of

approximations that has been used in previous treatments of
non-WKB reflection of Alfvén waves in the solar wind. For
example, we assume that the background magnetic field is
quasi-radial (Section 2.1) and that the fluctuations are
transverse and non-compressive (Section 2.3). We then
summarize the derivation of the equations that describe the
coupled evolution of the fluctuations and the background flow
(Section 2.4). In Section 3, we describe how the equations in
Section 2.4 lead to conservation equations for the total energy
and total cross helicity. We also show how these two
conservation equations can be combined to recover the
aforementioned equation of “non-WKB wave-action conserva-
tion” when the background flow is independent of time.
Finally, in Section 4, we describe how the equations in our
model separately conserve the action of inward and outward-
propagating AWs in the limit of short wavelengths and small
wave amplitudes.
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2. COUPLED EQUATIONS FOR THE FLUCTUATING
FIELDS AND BACKGROUND FLOW

We begin with the equations of ideal magnetohydrody-
namics (MHD),
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where ρ is the mass density, v is the velocity, B is the magnetic
field, p is the pressure, G is the gravitational constant, and M☉
is the mass of the Sun. We assume that the plasma satisfies the
energy equation
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where q is the heat flux and γ is the ratio of specific heats.

2.1. Two Models for the Background Magnetic Field

We set

B B B, 50 ( )d= +

where the background magnetic field B0 is a fixed, time-
independent function of space. We neglect solar rotation and
consider two models for the background magnetic field:

Model 1: B0 consists of exactly radial magnetic field lines
filling a region that spans a solid angle of order unity as seen
from the Sun, with B0 depending only on heliocentric
distance r.

Model 2: B0 corresponds to a narrow magnetic flux tube in
which the magnetic field is nearly but not exactly radial, which
allows for super-radial divergence of the magnetic field. In this
second case, we take the flux-tube to have an approximately
square cross section and impose periodic boundary conditions
on the edges of this cross section, as described further in
Appendix A. We also take the opening angle θ of the flux tube
to be 1 .

In both models,
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Equation (6) is exact in model 1 and correct to leading order in
θ in model 2. In both models, we are able to discard terms
proportional to either b̂ ´ or b bˆ · ˆ . Such terms vanish

exactly in the case of model 1 and are much smaller than the
terms we keep in the case of model 2.

2.2. Averages over Surfaces Perpendicular to B0

For both background-magnetic-field models discussed in
Section 2.1, we define the “surface average” of an arbitrary
function f, denoted fá ñ, through the equation

f
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where dAf
Sò denotes an integral of f over a surface S that has

area A and is everywhere normal to B0. In model 1, S is the
intersection of the modeled region with a spherical shell of
some radius r. In model 2, the surface integral in Equation (10)
is confined to the interior of the modeled magnetic flux tube. In
both models, we are able to discard terms of the form a·á ñ^
when they arise in the derivation of the equations in Section 2.4,
where â is everywhere perpendicular to b̂, because such terms
are much smaller than the terms we keep. We discuss this point
further in the context of model 2 in Appendix A. In model 1,
averages of the form a·á ñ^ can be dropped when â contains
one or more fluctuating quantities in part because we assume
that

L r, 11c ( )^ 

where Lc^ is the correlation length of the turbulence perpendi-
cular to B0.

2.3. The Transverse, Non-Compressive Approximation

As in Equation (5), we set each of ρ, v, and p equal to the
sum of a background value (denoted with a “0” subscript) and a
fluctuating part (dr, vd , and pd ). We define

v b vv , 12ˆ ( )d= + ^

where v b 0· ˆd =^ . For the scalar quantities v, p, and ρ, we
define the background quantities to be surface averages:
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We assume that
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and
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We refer to Equations (14) through (17) as the transverse, non-
compressive approximation. Observations provide some sup-
port for this approximation. For example, in situ measurements
show that turbulent fluctuations in the solar wind are weakly
compressive and preferentially transverse (see, e.g., Goldstein
et al. 1995; Tu & Marsch 1995; Bruno & Carbone 2005).
Radio-scintillation observations further indicate that 0dr r
at heliocentric distances as small as a few solar radii (Coles &
Harmon 1989; Markovskii & Hollweg 2002; Chandran
et al. 2009). On the other hand, transverse, non-compressive
fluctuations nonlinearly generate compressive fluctuations and
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longitudinal fluctuations at some level, an effect that we
neglect. Thus, while the transverse, non-compressive approx-
imation may apply to the bulk of the fluctuation energy, the
equations we derive in Section 2.4 do not account for all of the
physical processes occurring in solar-wind turbulence.

2.4. Coupled Equations for the Fluctuating
and Background Quantities

In this section, we present the equations that describe the
fluctuations and background flow to leading order in θ, L rc^ ,

0dr r , and p p0d . To obtain an equation describing the average
parallel velocity, we take the dot product of Equation (2) with
b̂ and then average the resulting equation over a surface
perpendicular to b̂ as described in Section 2.2. This yields
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The term proportional to σ on the right-hand side of
Equation (18) is the radial component of the averaged MHD
Reynolds stress B B v v4 0· ·d d d dp rá  -  ñ^ ^ , and was
obtained previously by Usmanov et al. (2011, 2014).

Upon multiplying Equation (18) by b̂ and subtracting the
resulting equation from Equation (2), we obtain the perpendi-
cular momentum equation,
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where
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dP is the fluctuating part of p B 82 p+ , the quantity a( )̂ is
defined via Equation (7) for arbitrary a, and f f( ) = ^ ^ for
an arbitrary scalar function f. The projection of Equation (3)
onto a plane perpendicular to b̂ yields
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Averaging Equation (1) as in Section 2.2, we obtain
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Subtracting Equation (22) from (1), we find that
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Because of the transverse, non-compressive approximation
(Equations (14) through (17)), the density fluctuations have no
effect on the flow to leading order. Equation (23) thus describes

the evolution of passive-scalar density fluctuations in the
expanding solar wind.
We define a normalized magnetic fluctuation
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and the Elsasser variables
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Given our sign convention in Equation (25), z+ (z-) represents
non-compressive, Alfvén-wave-like fluctuations that propagate
in the direction of B0 ( B0- ). By combining Equations (19) and
(21), we find that
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is the Alfvén velocity. Equation (26) was previously used
by Chandran & Hollweg (2009) and is a specialized form
of the more general Elsasser-variable equation obtained
by a number of authors (e.g., Zhou & Matthaeus 1990;
Velli 1993; Verdini & Velli 2007; Zank et al. 2012), in which
we have used Equation (6) to replace the quantity
z U vA· ( ) -  appearing in those studies with the quantity

z U v2 A( ) ( )s -  . We rewrite Equation (26) in terms of
the Elsasser stream functions and Elsasser vorticities in
Appendix B.

3. CONSERVATION LAWS

To obtain an equation expressing conservation of total
energy, we first take the dot product of Equation (26) with z2 

and average over a surface perpendicular to b̂ to find
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We then take the sum of the following equations: Equation (18)
multiplied by U; Equation (22) multiplied by U 22 ; the “plus
version” of Equation (28) multiplied by 40r ; the “minus
version” of Equation (28) multiplied by 40r ; and the average

of Equation (4) over a surface perpendicular to b̂. This yields
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is the surface-averaged total-energy density,

z z
4

31fluct
0 2 2( ) ( ) ( )

r
= á + ñ+ -

is the energy density of the turbulent fluctuations,
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is the surface-averaged total-energy flux.
The surface-averaged cross-helicity density is
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We obtain the equation expressing total-cross-helicity con-
servation by adding the following equations: the “minus
version” of Equation (28) multiplied by 20pr ; the “plus
version” of Equation (28) multiplied by 20pr- ; and
Equation (18) multiplied by B0 0r . This yields
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The fact that cross helicity is conserved in the presence of
non-WKB wave reflection is perhaps surprising. Most studies
of incompressible MHD turbulence focus on the case of a
stationary background, in which the cross helicity arises
entirely from the turbulent fluctuations. In that case, converting
z fluctuations into z fluctuations would violate cross-helicity
conservation. In contrast, the interaction between fluctuations
and a moving, inhomogeneous, and time-dependent solar wind
changes the cross helicity via two mechanisms: non-WKB
wave reflection, which changes the cross helicity in the
fluctuations, and the transfer of momentum from the fluctua-
tions to the background plasma, which alters the cross-helicity
content of the background flow. The combined effect of these
two mechanisms conserves the total cross helicity in the sense
of Equation (35), which, when integrated over some arbitrary
volume, implies that the change in the total cross helicity
within that volume equals the amount of cross helicity that
flows into that volume through its boundaries.

We note that total cross helicity is also conserved in weak,
homogeneous, compressible MHD turbulence, despite the fact
that interactions between Alfvén waves and magnetosonic
waves convert z energy into z energy (Chandran 2008). In
that problem, there is no flow of cross helicity through the
boundaries, and the change in the cross helicity of the

fluctuations is exactly offset by the change in the cross helicity
of the background. The cross helicity of the background
changes because the resonant three-wave interactions that
convert z fluctuations into z fluctuations simultaneously
generate a small, average, background flow parallel or anti-
parallel to B0.
We can combine the equations of cross-helicity conservation

and energy conservation by first multiplying Equation (35) by
U B0 0r and then using Equation (29) to rewrite the term

B UU B h p0 0 0( ) · ( ) ·r  =  in terms of variables other than
p0. Recalling that B0 and U are parallel, which implies that
B U B t0 0 0 0· ( )r r = -¶ ¶ , we find after some algebra that
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When the background plasma is steady, the right-hand side of
Equation (38) vanishes, and Equation (38) is equivalent to
Equation (26) of Heinemann & Olbert (1980), which those
authors interpreted as the generalization of AW action
conservation to the non-WKB regime. Although Heinemann
& Olbert (1980) derived their Equation (26) for linear waves,
their Equation (26) is also valid in the nonlinear regime,
provided t U t 00r¶ ¶ = ¶ ¶ = , as can be seen from Equa-
tion (38) above. On the other hand, when the background
plasma varies in time, the right-hand side of Equation (38) is in
general nonzero. Thus, Heinemann & Olbert (1980)’s Equation
(26) does not extend to the case of a time-dependent
background.

4. WAVE ACTION

Bretherton & Garrett (1968) considered the propagation of
linear waves in slowly varying, inhomogeneous, moving media
in the WKB limit of short wavelengths and short wave periods.
They took the waves to satisfy a dispersion relation of the form

k r t, , , 39( ( )) ( )w l= W

where r t,( )l is some slowly varying function of position and
time. The group velocity of the waves is then

c , 40k ( )= W

where k denotes the gradient operator in wavenumber space,
and the frequency varies along a ray path according to the
equation
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Bretherton & Garrett (1968) showed that for a wide class of
conservative systems, including Alfvén waves in a time-
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dependent, inhomogeneous, moving medium,
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where c is the group velocity,

k U 44· ( )w w¢ = -

is the wave frequency measured in the local rest frame of the
medium, U is the velocity of the medium, and w is the energy
density of the waves.

For the case of WKB Alfvén waves propagating in a radial
magnetic field, z 4w 0
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U vA , and k vr Aw¢ =  . Upon multiplying Equation (43)
by ω and making use of Equation (41), we obtain
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To see how Equation (45) is recovered as a limiting case in our
analysis, we multiply Equation (28) by U v v40 A A( ) ( )r  and
simplify the resulting expression using Equation (22) and
the identities B U B t0 0 0 0· ( )r r = -¶ ¶ and v0 A· ( )r =

v v1 20 A A 0· ( ) ·r r-  =  . After some algebra, we obtain
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In the limit of short wavelengths and small wave amplitudes,
z z 0·á ñ + - . In this limit, Equation (46) reduces to (45).
When t0r¶ ¶ , U t,¶ ¶ and v tA¶ ¶ vanish, subtracting the
“minus version” of Equation (46) from the “plus version” of
Equation (46) reproduces Equation (38) with the right-hand
side of Equation (38) replaced by zero.

5. CONCLUSION

Conservation laws play a fundamental role in the study of
turbulence, because they are among the few analytic results
that can be used to gain insight into the physics of turbulent
systems. For example, energy conservation underpins the
concept of an energy cascade, in which nonlinear interactions
among fluctuations transfer fluctuation energy in a loss-free
manner from large scales to small scales. This idea ultimately
explains why the turbulent heating rate can be determined
solely from the properties of the turbulence at large scales
(i.e., the inertial range or the outer scale), regardless of the
mechanisms that dissipate the energy at small scales.
Conservation of magnetic helicity in MHD turbulence leads
to the concept of an inverse cascade of magnetic helicity,
which plays an important role in turbulent dynamos (Frisch
et al. 1975; Pouquet et al. 1976). In this paper, we have
shown that a third conservation law, that of cross helicity,
applies to non-WKB AWs and reflection-driven AW
turbulence in the solar wind. This result is in some ways
surprising, because non-WKB reflection converts z fluctua-
tions into z fluctuations, thereby altering the cross-helicity

content of the fluctuations. The total cross helicity is
nevertheless conserved because the fluctuations exert a force
on the background solar wind, which alters the cross-helicity
content of the background flow.
Our finding that cross helicity is conserved by non-WKB

AWs and reflection-driven AW turbulence is important for a
few reasons. First, it implies that cross helicity can be
exchanged between the fluctuations and the background flow
without loss. Second, in contrast to the equation of “non-WKB
wave-action conservation” derived by Heinemann & Olbert
(1980), cross-helicity conservation holds even when the
background flow varies in time. (Also, as discussed in
Section 3, the equations of cross-helicity and energy conserva-
tion can be combined to recover Heinemann & Olbert (1980)’s
conservation law when the background solar wind is time-
independent.) Third, the coupled equations for the fluctuations
and background flow in Section 2 can be solved numerically to
provide new insights into the heating and acceleration of the
solar wind by reflection-driven AW turbulence, and cross-
helicity conservation provides a valuable benchmarking tool
for such simulations. There is a growing interest in numerical
simulations of the solar wind that incorporate AW turbulence
(see, e.g., Usmanov et al. 2011, 2014; van der Holst
et al. 2014), in part because of the upcoming launch of Solar
Probe Plus. This pioneering mission will shed new light on the
mechanisms that heat and accelerate the solar wind by
providing the first-ever in-situ measurements of the solar-wind
acceleration region. By providing new insights into one such
mechanism (reflection-driven AW turbulence) as well as a
valuable benchmarking tool for certain types of numerical
codes, our results may ultimately contribute to a deeper
understanding of the solar windʼs origin.

This work was supported in part by NASA grants
NNX11AJ37G and NNX15AI80G and NSF grants AGS-
1258998, AGS-1331355, and PHY-1500041.

APPENDIX A
THE NARROW-MAGNETIC-FLUX-TUBE

APPROXIMATION

As discussed in Section 2.1, our results apply under either of
two different assumptions about the geometry of the back-
ground magnetic field. The background field can be either
exactly radial throughout a region spanning a solid angle of
order unity as seen from the Sun, or the background field can
be approximately radial within a narrow magnetic flux tube
centered on a radial magnetic field line. In this appendix, we
consider the case of a narrow magnetic flux tube. We work in
spherical polar coordinates and take 0q = to correspond to the
exactly radial background magnetic field line that coincides
with the axis of the magnetic flux tube. We restrict our analysis
to a region within which

1. 47( )q 

We assume that

B
B B

0 48r
0

0 0 ( )
f f

=
¶
¶

=
¶
¶

=f
q

and define

BH r r, 0 . 490( ) ∣ ( )∣ ( )q= =
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The condition that B 0· = implies that B 0q¶ ¶ =q at
0q = . We require that B2

0 be finite, which implies that
B r0 q¶ ¶ vanishes at 0q = , so that

B r H r, 1 . 50r0
2( )( ) ( ) ( )⎡⎣ ⎤⎦q q= +

The condition B 00· = then implies that

B
r

d

dr
r H

2
1 . 510

2 2( ) ( ) ( )⎡⎣ ⎤⎦
q

q= - +q

We assume that

r

H

dH

dr
1 . 52( ) ( )~

Equations (48), (50) and (51) imply that

b r
rH

d

dr
r H

2
1 , 532 2( ) ( )ˆ ˆ ˆ ( )

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦q q

q= - +

where b B B0 0
ˆ º . It follows from Equation (53) that

b
r

, 54
2

· ˆ ( )
⎛
⎝⎜

⎞
⎠⎟s

q
 = +

where

H

dH

dr

1
. 55( )s = -

It also follows that for any vector a,

a b a
a

r

a

r2
, 56· ˆ ( )⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ 

s q q
 = + +^

^ 

where b aa ˆ ·= and a a ba ˆ= -^  .

The quantities b̂ ´ and b bˆ · ˆ relate to twist and
curvature of magnetic field lines and satisfy the relations

b b
r

57
2

ˆ · ˆ ( )
⎛
⎝⎜

⎞
⎠⎟y

q
 =  +^

and

b b b b , 58( )ˆ ˆ ˆ · ˆ ( ) ´ = ´ 

where

r d

dr
r r

8
2 2 . 59

2
( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥y

q
s s s= + -

Equation (58) is not a vector identity, but is exact because of
Equation (48). It follows from Equations (52), (54), (57) and
(58) that

b b b b
r r

1
. 60∣ ˆ ∣ ∣ ˆ · ˆ ∣ ∣ · ˆ ∣ ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ 

q
 ´ ~  ~  ~

At several points in Sections 2 and 3, we average equations
over surfaces that are everywhere perpendicular to B0, as
described in Section 2.2. To specify these surfaces mathema-
tically in the case of a narrow magnetic flux tube in which B0 is
not exactly radial, we introduce the vector potential A0
associated with the background magnetic field and define
Clebsch coordinates (Euler potentials) α and β that are related
to A0 through the equation A0 a b=  , which yields

B . 610 ( )a b=  ´ 

Since B B 00 0· ·a b =  = , α and β are constant along the
magnetic field lines of B0. The particular Clebsch coordinates
that we use are

H r x 621 2[ ( )] ( )a =

and

H r y, 631 2[ ( )] ( )b =

where x y z, ,( ) are Cartesian coordinates, and the positive z
axis coincides with 0q = . When Equations (62) and (63)
are substituted into Equation (61), the resulting value of B0

satisfies Equations (50) and (51), as required. We introduce
a third coordinate s such that surfaces of constant s are
perpendicular to B0, with s = r at 0q = :

s r
x y

r H

d

dr
r H r r

4
. 64

2 2

2
2 4( ) ( )( ) ( )⎡⎣ ⎤⎦  q= -

+
+

The s, ,( )a b coordinate system is illustrated in Figure 1.
For any function f s, ,( )a b , we define fá ñ to be the average

of f over a surface of constant s with d a d- < < and
d b d- < < , where δ is a constant that fixes the width of the

flux tube. Two such surfaces are sketched with cross-hatched
lines in Figure 1. Thus,

f
A

d d
f

B

1
, 65

0
( )ò òa bá ñ =

d

d

d

d

- -

where

A d d
B

1
66

0
( )ò òa b=

d

d

d

d

- -

is the area of the averaging surface.
Equations (50), (51), and (64) imply that B0∣ ∣ =

H s 1 2( )[ ( )] q+ . We can thus rewrite Equation (65) as

f d d f
1

1 , 672( ) ( )⎡⎣ ⎤⎦ò òa b qá ñ =
F

+
d

d

d

d

- -

where

4 682 ( )dF =

is the magnetic flux through the averaging surface, which is
independent of s. Equation (64) implies that s 1∣ ∣ = + 2( ) q ,
so that

b f
f

s
1 . 692( )ˆ · ( )⎡⎣ ⎤⎦ q =

¶
¶

+

Figure 1. Clebsch coordinates s, ,( )a b . Surfaces of constant s are perpendicular
to B0. The values of α and β are constant along field lines of B0.
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It follows from Equation (67) that

f

s s
f 1 , 700

2( ) ( )⎡⎣ ⎤⎦ q
¶
¶

=
¶
¶

á ñ +

where 0q is the value of θ at the middle of one of
the edges of the averaging surface—e.g., at coordinates

s s, , , 0,( ) ( )a b d= .
We say that a scalar function g satisfies periodic boundary

conditions in the plane perpendicular to B0 if it obeys the
relations

g s g s g s g s, , , , , , , ,

71

( ) ( ) ( ) ( )

( )

d b d b a d a d= - = -

for all ,( )a d dÎ - , all ,( )b d dÎ - , and all s. We say that
a vector a satisfies periodic boundary conditions in the plane
perpendicular to B0 if the vectorʼs components a · a , a · b ,
and a s·  satisfy the periodicity relations in Equations (71). If a
vector â is periodic in the plane perpendicular to B0 and
satisfies a B 00· =^ everywhere, then Stokes’ theorem can be
used to show that

a
a

r
, 72

0
2 1 2

· ( )
q

á ñ ~
ñ

^
^

where we have assumed that the characteristic length scale of
â perpendicular to B0 is r0q~ . The rms value of a· ^ on the
averaging surface is a r2 1 2

0∣ ∣ ( )q~á ñ^ . Equation (72) thus
implies that the average of a· ^ is reduced relative to its rms
value by a factor of 0

2q~ . (This reduction factor would be even
smaller if the characteristic length scale of â perpendicular to
B0 were much smaller than r0q .) This reduction enables us to
drop averaged quantities of the form a·á ñ^ in Section 2,
because they contribute only higher-order corrections to the
equations presented.

APPENDIX B
ELSASSER STREAM FUNCTIONS AND VORTICITIES

We define the Elsasser stream functions z and the Elsasser
vorticities W through the equations

z b , 732ˆ ( )z z= ´  W =   
^



where

b bf f f f 742 ( )( )· · ˆ ˆ · ( )⎡⎣ ⎤⎦ º   =   - ^ ^

for any function f. By taking the cross product of Equation (26)
with b̂ and then taking the divergence of the resulting equation,
we can rewrite Equation (26) in the form

b

v U

t
U v

U v

2

2
1

2

1

2

A

A

A

( )

( )

( )

ˆ ·

· ·⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

s

s

¶
¶

W +  W + W

= -  W

+   W - W

  

+ -



1

2
, , , , 752 2 2( ){ } { } { } ( )z z z z z z-  +   -

^
+ +

^
-

^
- +

where

bf g f g, . 76( ){ } ˆ · ( )º  ´ ^ ^

Here, we have assumed that either 1q  for the case in which
the background magnetic field corresponds to a narrow
magnetic flux tube or L rc^  for the case in which B0 is
radial throughout a region spanning a solid angle of order
unity, where Lc^ is the correlation length of the fluctuations
perpendicular to B0. Equation (75) generalizes Equation (A4)
of van Ballegooijen et al. (2011) to account for the background
flow U. Equation (75) is the same equation that was solved
numerically by Perez & Chandran (2013). (Note that the minus
sign on the right-hand side of their Equation (10), which was
erroneous, was a typo in their paper, not an error in their code.)
The form of the nonlinear term on the last line of Equation (75)
is the same as in the RMHD equations derived by Schekochihin
et al. (2009), except that our z corresponds to their z. In the
homogeneous-background limit (in which σ, vA· , and U·
vanish), Equation (75) reduces to Equation (21) of Schekochi-
hin et al. (2009).

REFERENCES

Belcher, J. W., & Davis, L., Jr. 1971, JGR, 76, 3534
Bretherton, F. P., & Garrett, C. J. R. 1968, RSPSA, 302, 529
Bruno, R., & Carbone, V. 2005, LRSP, 2, 4
Chandran, B. D. G. 2008, PhRvL, 101, 235004
Chandran, B. D. G., & Hollweg, J. V. 2009, ApJ, 707, 1659
Chandran, B. D. G., Quataert, E., Howes, G. G., Xia, Q., &

Pongkitiwanichakul, P. 2009, ApJ, 707, 1668
Coleman, P. J. 1968, ApJ, 153, 371
Coles, W. A., & Harmon, J. K. 1989, ApJ, 337, 1023
Cranmer, S. R., & van Ballegooijen, A. A. 2005, ApJS, 156, 265
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. 2007, Sci, 318, 1574
Dmitruk, P., Matthaeus, W. H., Milano, L. J., et al. 2002, ApJ, 575, 571
Frisch, U., Pouquet, A., Leorat, J., & Mazure, A. 1975, JFM, 68, 769
Goldstein, M. L., Roberts, D. A., & Matthaeus, W. H. 1995, ARA&A, 33, 283
Heinemann, M., & Olbert, S. 1980, JGR, 85, 1311
Hollweg, J. V., Cranmer, S. R., & Chandran, B. D. G. 2010, ApJ, 722, 1495
Hollweg, J. V., & Isenberg, P. A. 2007, JGRA, 112, 8102
Iroshnikov, P. S. 1963, AZh, 40, 742
Kraichnan, R. H. 1965, PhFl, 8, 1385
Markovskii, S. A., & Hollweg, J. V. 2002, JGRA, 107, 21
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P.

1999, ApJL, 523, L93
Parker, E. N. 1965, SSRv, 4, 666
Perez, J. C., & Chandran, B. D. G. 2013, ApJ, 776, 124
Pouquet, A., Frisch, U., & Leorat, J. 1976, JFM, 77, 321
Schekochihin, A. A., Cowley, S. C., Dorland, W., et al. 2009, ApJS, 182, 310
Tu, C., & Marsch, E. 1995, SSRv, 73, 1
Usmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. 2014, ApJ, 788, 43
Usmanov, A. V., Matthaeus, W. H., Breech, B. A., & Goldstein, M. L. 2011,

ApJ, 727, 84
van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., & DeLuca, E. E.

2011, ApJ, 736, 3
van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81
Velli, M. 1993, A&A, 270, 304
Velli, M., Grappin, R., & Mangeney, A. 1989, PhRvL, 63, 1807
Verdini, A., Grappin, R., Pinto, R., & Velli, M. 2012, ApJL, 750, L33
Verdini, A., & Velli, M. 2007, ApJ, 662, 669
Zank, G. P., Dosch, A., Hunana, P., et al. 2012, ApJ, 745, 35
Zhou, Y., & Matthaeus, W. H. 1989, GeoRL, 16, 755
Zhou, Y., & Matthaeus, W. H. 1990, JGR, 95, 14881

7

The Astrophysical Journal, 811:50 (7pp), 2015 September 20 Chandran et al.

http://dx.doi.org/10.1029/JA076i016p03534
http://adsabs.harvard.edu/abs/1971JGR....76.3534B
http://dx.doi.org/10.1098/rspa.1968.0034
http://adsabs.harvard.edu/abs/1968RSPSA.302..529B
http://dx.doi.org/10.12942/lrsp-2005-4
http://adsabs.harvard.edu/abs/2005LRSP....2....4B
http://adsabs.harvard.edu/abs/2008PhRvL.101w5004C
http://dx.doi.org/10.1088/0004-637X/707/2/1659
http://adsabs.harvard.edu/abs/2009ApJ...707.1659C
http://dx.doi.org/10.1088/0004-637X/707/2/1668
http://adsabs.harvard.edu/abs/2009ApJ...707.1668C
http://dx.doi.org/10.1086/149674
http://adsabs.harvard.edu/abs/1968ApJ...153..371C
http://dx.doi.org/10.1086/167173
http://adsabs.harvard.edu/abs/1989ApJ...337.1023C
http://dx.doi.org/10.1086/426507
http://adsabs.harvard.edu/abs/2005ApJS..156..265C
http://dx.doi.org/10.1126/science.1151747
http://adsabs.harvard.edu/abs/2007Sci...318.1574D
http://dx.doi.org/10.1086/341188
http://adsabs.harvard.edu/abs/2002ApJ...575..571D
http://dx.doi.org/10.1017/S002211207500122X
http://adsabs.harvard.edu/abs/1975JFM....68..769F
http://dx.doi.org/10.1146/annurev.aa.33.090195.001435
http://adsabs.harvard.edu/abs/1995ARA&amp;A..33..283G
http://dx.doi.org/10.1029/JA085iA03p01311
http://adsabs.harvard.edu/abs/1980JGR....85.1311H
http://dx.doi.org/10.1088/0004-637X/722/2/1495
http://adsabs.harvard.edu/abs/2010ApJ...722.1495H
http://dx.doi.org/10.1029/2007JA012253
http://adsabs.harvard.edu/abs/2007JGRA..112.8102H
http://adsabs.harvard.edu/abs/1963AZh....40..742I
http://dx.doi.org/10.1063/1.1761412
http://adsabs.harvard.edu/abs/1965PhFl....8.1385K
http://dx.doi.org/10.1029/2001JA009140
http://dx.doi.org/10.1086/312259
http://adsabs.harvard.edu/abs/1999ApJ...523L..93M
http://dx.doi.org/10.1007/BF00216273
http://adsabs.harvard.edu/abs/1965SSRv....4..666P
http://dx.doi.org/10.1088/0004-637X/776/2/124
http://adsabs.harvard.edu/abs/2013ApJ...776..124P
http://dx.doi.org/10.1017/S0022112076002140
http://adsabs.harvard.edu/abs/1976JFM....77..321P
http://dx.doi.org/10.1088/0067-0049/182/1/310
http://adsabs.harvard.edu/abs/2009ApJS..182..310S
http://dx.doi.org/10.1007/BF00748891
http://adsabs.harvard.edu/abs/1995SSRv...73....1T
http://dx.doi.org/10.1088/0004-637X/788/1/43
http://adsabs.harvard.edu/abs/2014ApJ...788...43U
http://dx.doi.org/10.1088/0004-637X/727/2/84
http://adsabs.harvard.edu/abs/2011ApJ...727...84U
http://dx.doi.org/10.1088/0004-637X/736/1/3
http://adsabs.harvard.edu/abs/2011ApJ...736....3V
http://dx.doi.org/10.1088/0004-637X/782/2/81
http://adsabs.harvard.edu/abs/2014ApJ...782...81V
http://adsabs.harvard.edu/abs/1993A&amp;A...270..304V
http://dx.doi.org/10.1103/PhysRevLett.63.1807
http://adsabs.harvard.edu/abs/1989PhRvL..63.1807V
http://dx.doi.org/10.1088/2041-8205/750/2/L33
http://adsabs.harvard.edu/abs/2012ApJ...750L..33V
http://dx.doi.org/10.1086/510710
http://adsabs.harvard.edu/abs/2007ApJ...662..669V
http://dx.doi.org/10.1088/0004-637X/745/1/35
http://adsabs.harvard.edu/abs/2012ApJ...745...35Z
http://adsabs.harvard.edu/abs/1989GeoRL..16..755Z
http://dx.doi.org/10.1029/JA095iA09p14881
http://adsabs.harvard.edu/abs/1990JGR....9514881Z

	1. INTRODUCTION
	2. COUPLED EQUATIONS FOR THE FLUCTUATING FIELDS AND BACKGROUND FLOW
	2.1. Two Models for the Background Magnetic Field
	2.2. Averages over Surfaces Perpendicular to B0
	2.3. The Transverse, Non-Compressive Approximation
	2.4. Coupled Equations for the Fluctuating and Background Quantities

	3. CONSERVATION LAWS
	4. WAVE ACTION
	5. CONCLUSION
	APPENDIX ATHE NARROW-MAGNETIC-FLUX-TUBE APPROXIMATION
	APPENDIX BELSASSER STREAM FUNCTIONS AND VORTICITIES
	REFERENCES



