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ABSTRACT

Solar wind electron velocity distributions at 1 au consist of a thermal “core” population and two suprathermal populations: “halo” and
“strahl”. The core and halo are quasi-isotropic, whereas the strahl typically travels radially outwards along the parallel or anti-parallel
direction with respect to the interplanetary magnetic field. Using Cluster-PEACE data, we analyse energy and pitch angle distributions
and use machine learning techniques to provide robust classifications of these solar wind populations. Initially, we used unsupervised
algorithms to classify halo and strahl differential energy flux distributions to allow us to calculate relative number densities, which
are of the same order as previous results. Subsequently, we applied unsupervised algorithms to phase space density distributions over
ten years to study the variation of halo and strahl breakpoint energies with solar wind parameters. In our statistical study, we find
both halo and strahl suprathermal breakpoint energies display a significant increase with core temperature, with the halo exhibiting a
more positive correlation than the strahl. We conclude low energy strahl electrons are scattering into the core at perpendicular pitch
angles. This increases the number of Coulomb collisions and extends the perpendicular core population to higher energies, resulting
in a larger difference between halo and strahl breakpoint energies at higher core temperatures. Statistically, the locations of both
suprathermal breakpoint energies decrease with increasing solar wind speed. In the case of halo breakpoint energy, we observe two
distinct profiles above and below 500 km s−1. We relate this to the difference in origin of fast and slow solar wind.
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1. Introduction

Solar wind electron velocity distributions at 1 au consist
of three main populations: the thermal (<50 eV) population,
termed the core, and two suprathermal (∼60–1000 eV) popu-
lations termed the halo and the strahl (Feldman et al. 1975;
Maksimovic et al. 2005). The core has an average tempera-
ture at 1 au of ∼105 K (Balogh & Smith 2001) and exhibits
a nearly Maxwellian velocity distribution. At 1 au, the core
contains ∼95%–96% of the total solar wind electron den-
sity in slow wind (McComas et al. 1998; Maksimovic et al.
2005; Štverák et al. 2009) and ∼90% in fast wind (Štverák et al.
2009). The halo, on the other hand, exhibits a κ-distribution
and forms tails in the total electron velocity distribution. The
κ-distribution has a similar shape to the Maxwellian distribution
at low thermal velocities. At speeds greater than the ther-
mal speed, the κ-distribution decreases as a power law. The
κ-distribution of the halo has a greater temperature than the
Maxwellian distribution of the core (Feldman et al. 1975).
The core and halo are quasi-isotropic populations, whereas the
strahl travels along the interplanetary magnetic field (IMF) and
can be observed in either the parallel or anti-parallel mag-
netic field direction (Feldman et al. 1978), or in both directions
(Gosling et al. 1987; Owens et al. 2017), depending on the IMF
topology. There are also times in which a strahl population is not
detectable (Anderson et al. 2012), particularly in slow solar wind
(Gurgiolo & Goldstein 2017).

The thermal core is thought to form in the corona, as
a result of Coulomb collisions and wave-particle interactions
(Pierrard et al. 2001; Vocks et al. 2008). Likewise, suprathermal
solar wind electrons originate from the solar corona (Viñas et al.
2000; Che & Goldstein 2014) and then evolve into the strahl
and halo populations as they travel away from the Sun. The
majority of the halo population is formed by the scattering of
strahl electrons via Coulomb collisions (Horaites et al. 2018)
and wave-particle interactions (Gary et al. 1994; Landi et al.
2012; Vasko et al. 2019; Tong et al. 2019; Verscharen et al.
2019) as it travels outwards in the solar wind (Saito & Gary
2007; Pagel et al. 2007). The strong field-aligned nature of the
strahl occurs due to adiabatic focusing effects (Owens & Forsyth
2013), which are particularly prevalent at smaller distances from
the Sun due to larger gradients in magnetic field strength. Adi-
abatic focusing describes the change in pitch angle experienced
by an electron that slowly travels into a region with a stronger
or weaker magnetic field. Ignoring any scattering effects, an
electron’s pitch angle evolution with heliocentric distance then
depends on the conservation of its magnetic moment. This con-
servation law results in a decrease in pitch angle with increasing
heliocentric distance (Parker 1963; Owens et al. 2008).

At 1 au, suprathermal electrons do not undergo any sig-
nificant Coulomb collisions (Vocks et al. 2005). This suggests
that adiabatic focusing is the dominant mechanism experi-
enced by these electrons. Under this assumption, the strahl
narrows with heliocentric distance into a collimated beam of
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width <1◦ (Anderson et al. 2012). However, the strahl has been
observed to broaden to pitch angles of greater than 20◦ at
1 au (Hammond et al. 1996; Anderson et al. 2012; Graham et al.
2017), suggesting the presence of additional scattering processes
(Bercic et al. 2019). This increase in strahl width with radial dis-
tance is not constant, as observations at both 5.5 au and 10 au
show that the rate of solar wind electron pitch angle scattering
decreases with radial distance (Walsh et al. 2013; Graham et al.
2017).

The strahl and halo relative number density ratios vary with
radial distance. We use ns, nh, nc and ne to define the strahl,
halo, core and total electron number densities respectively. The
ratio (ns + nh)/ne stays approximately constant with heliocentric
distance in both fast and slow wind, according to Štverák et al.
(2009), who obtains physical parameters by fitting to electron
velocity distributions. The effect of strahl broadening results in a
decrease of ns/ne with increasing heliocentric distance. Concur-
rently, nh/ne increases with heliocentric distance (Štverák et al.
2009), further indicating a link between the strahl and halo,
and that the relevant scattering mechanisms cause the strahl to
broaden and eventually scatter into the halo.

Multiple studies (e.g. Feldman et al. 1975; Scudder & Olbert
1979; Pilipp et al. 1987c; McComas et al. 1992; Štverák et al.
2009) identify the energy above which non-thermal parts of the
distribution deviate from the Maxwellian core. We define this
energy as the ‘breakpoint energy’, Ebp. Particles above a certain
energy experience minimal collisions, creating the non-thermal
tails in the electron velocity distribution function and form-
ing halo and strahl. This ‘breakpoint energy’ is thought to be
determined primarily by Coulomb collisions (Scudder & Olbert
1979). Based on the properties of Coulomb collisions and the
inhomogeneity of the solar wind, and assuming minimal wave-
particle interactions in the heliosphere, this breakpoint energy
theoretically relates to core temperature, Tc, and heliocentric
radial distance, r, as (Scudder & Olbert 1979):

Ebp(r) = 7kBTc(r). (1)

At 1 au, the average breakpoint energy is ∼60 eV (Feldman et al.
1975), however, its value varies with the local core tempera-
ture and solar wind speed (Štverák et al. 2009). The breakpoint
energies between core and halo and between core and strahl are
often different. Using electron velocity distribution functions,
Štverák et al. (2009) show that the ratio between halo breakpoint
energy and core temperature is larger than the ratio between
strahl breakpoint energy and core temperature, across a range
of heliocentric distances. At 1 au, Štverák et al. (2009) observe
Ebp/kBTc ≈6.5 and Ebp/kBTc ≈4.5 for halo and strahl respec-
tively. Empirical studies based on Ulysses data at heliocentric
distances > 1 au (McComas et al. 1992) find that the break-
point energy decreases with distance ∝ r−0.4, and ranges between
47 eV and 60 eV at 1 au, and that Ebp/kBTc ≈7.5. However, due
to the differences in the applied methods for the determination of
the cut-off between core and suprathermal distribution functions,
this difference is not significant.

Models, which assume an absence of exchange between
parallel and perpendicular pressure, predict a core temperature
anisotropy in the slow solar wind of Tc‖/Tc⊥ ≈30, where Tc‖ and
Tc⊥ are the temperature of the core components in the direc-
tion parallel and perpendicular to the magnetic field respectively
(Phillips & Gosling 1990). Observations at 1 au, however, find
a temperature anisotropy, Tc‖/Tc⊥ ≈1.2 (Feldman et al. 1975;
Pilipp et al. 1987a). To explain this discrepancy between the-
ory and observations, electron instabilities driven by temperature

anisotropy, Coulomb collisions, and heat-flux skewness are
thought to transfer the internal electron kinetic energy from
the parallel to perpendicular direction (Pilipp et al. 1987a).
Štverák et al. (2008) shows that Tc⊥/Tc‖ = 0.75± 15 in fast wind
streams, which is also consistent with the parallel to perpendic-
ular transfer of internal kinetic energy.

In this paper, we demonstrate how machine learning tech-
niques such as clustering can be applied to solar wind electron
data, and we discuss its advantages over previous traditional
methods, which involve fitting to electron velocity distributions.
In order to demonstrate specific advantages, we analyse a partic-
ular physical property of solar wind electron populations – the
breakpoint energy – by identifying core, halo, and strahl distribu-
tions at 1 au. Characterising the breakpoint energy is important
as this property of a distribution function provides a diagnos-
tic of the relative importance of scattering mechanisms such as
Coulomb collisions and wave-particle interactions. These mech-
anisms determine the shape of electron distribution functions in
both solar wind and astrophysical plasmas (e.g. Dulk & Marsh
1982; Pilipp et al. 1987b). In addition to these benefits, under-
standing the location of this cut-off between the thermal and non-
thermal parts of a distribution, using only a statistical analysis of
the data, provides useful limiting parameters for future studies
which require multi-component fits to the total electron velocity
distribution (Bercic et al. 2019).

Machine learning provides us with a robust method of clas-
sification from which fine variations of electron populations
in relation to energy and pitch angle can be derived, with the
advantage of not requiring prior assumptions of the distributions
of these populations. Applying machine learning techniques to
a large dataset builds upon previous empirical studies of the
suprathermal breakpoint energy. By classifying individual elec-
tron distributions, we characterise solar wind electron popula-
tions on a higher energy resolution than previous studies. As
a result, our method enables breakpoint energy to be explored
further with respect to other solar wind parameters, and by
doing so we draw physical conclusions based on the relation-
ship between this fundamental property and each parameter, for
both the halo and the strahl. Machine learning techniques will
become increasingly important with the anticipated volume of
high cadence electron data from, for example, the Solar Orbiter
mission (Müller & Marsden 2013).

2. Method

In this section, we describe the steps we take in order to classify
solar wind electrons with machine learning techniques, followed
by a description of the validation of our method. Firstly, we
(1) determine which spacecraft and instruments are best suited
for this study, and locate data from different solar wind regimes
for testing. Secondly, we (2) identify possible machine learning
models to be used to distinguish between electron populations.
We then (3) verify the use of these models to find the ‘breakpoint
energy’ between suprathermal and core electrons. Following on,
we (4) apply these machine learning algorithms to separate halo
and strahl electrons based on their energy and pitch angle dis-
tributions. Lastly, we (5) calculate relative number densities of
each population for different solar wind speeds and compare to
previous studies (Štverák et al. 2009). This allows us to deter-
mine the effectiveness of our machine learning models.

Steps 3 and 4 are particularly important for our statistical
study. We use the method in step 3 to calculate the breakpoint
energy in each pitch angle bin and then step 4 to predict whether
the strahl or halo is dominant at that pitch angle.
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2.1. Data

We used data (Laakso et al. 2010) from the PEACE (Plasma
Electron And Current Experiment, Johnstone et al. 1997;
Fazakerley et al. 2010) instrument onboard the Cluster mission’s
C2 spacecraft (Escoubet et al. 2001). Cluster consists of four
spacecraft, in tetrahedral formation, each spinning at a rate of
4 s−1. The PEACE data are recorded with a 4 s time resolution
and are based on two instantaneous measurements of the pitch
angle distribution per spin. The dataset is a two-dimensional
product containing twelve 15◦ wide pitch angle bins and 44
energy bins, spaced linearly between 0.6 eV to 9.5 eV and loga-
rithmically at higher energies. PEACE works by simultaneously
recording elevation bins at two specific azimuth angles separated
by 180◦. We initially corrected the PEACE data for spacecraft
potential by using measurements from the Cluster-EFW instru-
ment (Gustafsson et al. 2001) and corrections according to the
results of Cully et al. (2007). We discarded data from energy bins
below the calculated spacecraft potential.

We used the solar wind speed measurements from the Cluster-
CIS instrument onboard the C4 spacecraft (Rème et al. 2001),
while the position and magnetic field measurements are taken
from the Cluster-FGM instrument (Balogh et al. 1997). Using
the CIS measurements, we initially separated our input elec-
tron pitch angle distribution data into three (fast, medium and
slow) solar wind regimes to test our machine learning mod-
els. These regimes cover roughly 1–2 hours of data and have
average solar wind velocities of 686 km s−1, 442 km s−1 and
308 km s−1. The time periods we identify with these fast, medium
and slow wind regimes are 08:51–10:19 (02/03/2004), 00:38–
01:35 (30/01/2003) and 04:33–06:18 (08/02/2009), respectively
(Kajdič et al. 2016). We use these specific time intervals since
they contain enough data points (>10 000 samples) to effectively
train and test our machine learning models.

2.2. Machine learning techniques

We predominantly used unsupervised learning algorithms
to determine breakpoint energies, as well as separate halo
and strahl. Unsupervised learning algorithms do not require
“training” so they are more time efficient than supervised
learning algorithms. Our choice of algorithm is the K-means
clustering method (Arthur 2007) from the scikit-learn library
(Pedregosa et al. 2011). Unsupervised learning algorithms have
the advantage of not needing the user to assign labels to train-
ing data, which reduces bias and allows large surveys to be
carried out more efficiently. In the K-means algorithm, the num-
ber of clusters, K, is manually set to 2 to reflect the number of
populations we aim to distinguish between: a core cluster and
a suprathermal cluster. To calculate the breakpoint energy at a
specific pitch angle, our algorithm sorts between energy distri-
butions, at that pitch angle, and separates the distributions into
two groups on either side of the determined breakpoint energy.
We define xi as the vector representation of the phase space
density (PSD) tuples, where the index i labels tuples of three
subsequent energy bins (i.e. energy distributions spanning three
energy bins). We define µ j as the vector representation of two
random PSD tuples, where the index j labels each cluster. The
algorithm sorts these energy distributions into clusters by min-
imising the function:

n∑
i=1

K=2∑
j=1

ωi j

∥∥∥xi − µ j

∥∥∥2
, (2)

where

µ j =

∑n
i=1 ωi jxi∑n

i=1 ωi j
, (3)

ωi j =

{
1 if xi belongs to cluster j
0 otherwise,

(4)

and n is the number of 3-tuples at a fixed pitch angle. As each
3-tuple overlaps with its neighbouring 3-tuples, n = Ne − 2,
where Ne is the number of energy bins at each pitch angle. By
minimising the function in Eq. (2), our algorithm calculates the
breakpoint energy by: (1) randomly selecting two PSD vectors
in the dataset to become the central points of each cluster, µ j,
known as centroids, (2) assigning all remaining PSD vectors, xi,
to the closest centroid, based on the least-square error between
each vector and the centroids, (3) computing new centroids,
µ j, by calculating the average vector representation of the PSD
vectors assigned to the previous centroid, (4) reassigning each
PSD vector, xi, to the new nearest centroid, µ j, and (5) iterating
steps 3 and 4 until no more reassignments occur.

Once the two clusters have been finalised, the breakpoint
energy at the relevant pitch angle is determined to be the mid-
point between the uppermost energy bin in the cluster of 3-tuples
associated with lower energies (which represents the core), and
lowest energy bin in the cluster of 3-tuples associated with
higher energies (which represents suprathermal electrons). As
the PSD decreases with increasing energy in the relevant energy
range, we are able to locate a clear boundary between the two
clusters. To separate strahl and halo electrons, we use energy
distributions in conjunction with pitch angle distributions, as dis-
cussed below in Sect. 2.4. The process of applying our K-means
algorithm to pitch angle distributions is analogous to the method
described above, with xi now representing a pitch angle distribu-
tion at a certain energy, however in this case we find the “break”
in pitch angle instead. A detailed account of how the K-means
algorithm works is provided by Arthur (2007).

We validate our clustering method by comparing test cases
to an accurate supervised learning algorithm, trained on a sub-
set of manually labelled (as halo or strahl) pitch angle and
energy distributions. Once trained, the supervised learning algo-
rithm predicts which class (halo or strahl) a new pitch angle or
energy distribution belongs to. We compare supervised learn-
ing algorithms by calculating their ROC (Receiver operating
characteristic) scores (e.g. Flach & Kull 2015). The ROC score
compares a binary classification model’s sensitivity (true posi-
tive rate) and specificity (1 – false positive rate) performance. We
find the K-Nearest Neighbours (KNN; e.g. Peterson 2009) algo-
rithm performs best, achieving ROC scores >90% in all tests.
This model classifies data by finding the “majority vote” of the
nearest (labelled) neighbours to each unclassified data-point.

2.3. Distinguishing between suprathermal and core electron
populations

We demonstrate the use of unsupervised clustering to calculate
the breakpoint energy. Figure 1, which shows a cut of the differ-
ential energy flux distribution at constant pitch angle, visualises
this breakpoint energy. Figure 1 contains three regions with dif-
ferent distribution functions. At energies below the spacecraft
potential at ∼10 eV, photo-electrons dominate (blue dots). At
slightly higher energies, between 10 eV and ∼45 eV, the distri-
bution represents core electrons. At larger energies we observe
the halo population. We fit a Maxwellian (red) and κ-distribution
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Fig. 1. Differential energy flux as a function of energy at 90◦, averaged
across times 08:51–10:19 (02/03/2004) during our fast wind regime.
The red curve represents a fit to the core electron energy range and the
yellow curve to the halo energy range. The grey dashed line marks the
so-called “breakpoint energy” at 45± 3 eV.

(yellow) (Štverák et al. 2009) to the core and halo respectively,
to determine the energy at which the distributions intersect, that
is, the ‘breakpoint energy’.

The intersection in Fig. 1 results in an estimated halo break-
point energy of 45± 3 eV. We apply the same method to flux
measured at pitch angles 0◦ and 180◦, where the strahl carries
the highest value of the flux density in the suprathermal energy
regime. These intersections show a separation between the core
and suprathermal strahl population at 42± 3 eV. We use the core-
halo intersection in Fig. 1, which is labelled by the dashed line,
to validate our use of clustering analysis to calculate breakpoint
energy, detailed below.

We omit energies below 10 eV and above 540 eV from our
dataset and use the K-means clustering algorithm (Arthur 2007)
to classify the suprathermal and core populations, and hence cal-
culate the breakpoint energy, at our choice of pitch angle. We
assess the algorithm’s performance by comparing its classifica-
tions of the core population at each time step to an averaged
distribution of the data, such as in Fig. 1. This unsupervised
learning method produces encouraging results. At 90◦ pitch
angle, the algorithm estimates the average breakpoint energy to
be 45 eV± 3. The accuracy score between algorithm’s classifi-
cations and a fit to the averaged distribution is 92.9%. As we
predict binary classifications, we consider metric scores close
to 90% as “good” scores when testing our models, based on
what previous studies achieve (e.g. Qian et al. 2015; Zhang et al.
2017).

2.4. Separating halo and strahl electrons

Figure 2 illustrates a typical differential energy flux distri-
bution as a function of pitch angle and energy distribution
for one particular time (08:57:28–08:57:32 on 02/03/2004)
recorded by Cluster-PEACE. We limit the energy range to the
suprathermal energy regime, as a result of our breakpoint energy
analysis.

In order to show the average pitch angle distribution (PAD),
we take vertical slices in Fig. 2 at a given energy. The white
line (a) in Fig. 2 represents the slice from which we obtain the
example PAD in Fig. 3a. Below the typical breakpoint energy
these distributions are relatively isotropic across all pitch angles,
which is in contrast to the strahl distribution (McComas et al.
1992). At higher energies within the suprathermal regime, PADs

either show a quasi-isotropic distribution, which represents the
halo, or an anisotropic distribution with peak fluxes recorded at
0◦ and/or 180◦, which represents the halo population at all pitch
angles overlaid with field-aligned strahl.

From our breakpoint energy analysis, we limit our input data
to energies above 44 eV and convert these suprathermal data to
PADs across our energy range, e.g. as shown in Fig. 3a. We
use an arbitrary 10-minute subset of time intervals, equivalent
to 1800 samples, as training data. We assign each PAD a label,
depending on whether strahl is or is not present. Subsequently,
the entire set of PADs during our chosen wind speed regime
are classified, based on a trained KNN model. We find a strong
agreement between this supervised method and using K-means
to cluster the fast wind set of PADs into two groups (halo and
strahl), with a calculated ROC score of 90.3%.

Classifying PADs informs us of whether a strahl is present at
a certain energy, however we require classification of the energy
distributions at each pitch angle to extract the width of the strahl.
The white line (b) in Fig. 2 represents the slice from which we
obtain the example energy distribution in Fig. 3b. We now use
a 10-minute interval of energy distributions, at each pitch angle,
for our training data and provide labels depending on whether
strahl is present or not at that pitch angle. We find a strong sim-
ilarity between the supervised and unsupervised methods, when
classifying the entire set of flux-energy distributions, with a ROC
score of 98.3%. This comparison therefore validates the use of
the unsupervised method for any larger statistical survey.

For each time step, we combine the classifications of
suprathermal PADs and suprathermal energy distributions to cre-
ate a grid detailing whether the measured flux in each energy and
pitch angle bin is dominated by halo electrons or by strahl elec-
trons. A bin is identified as containing strahl if both the PAD
and energy distribution it resides in are classed as strahl by the
K-means algorithm. We show the results of our strahl and halo
classification in fast wind in Fig. 4. Each point represents a sin-
gle measurement at a given pitch angle and energy, with the
colour depicting the class (halo or strahl). The higher fluxes near
0◦ and 180◦ are associated with strahl (blue points). On occa-
sion, broader strahl is detected, as illustrated by the presence of
blue points at higher fluxes near 75◦. The existence of red points
across all pitch angles at lower fluxes confirms the presence of
the halo as an isotropic population.

We show the results of our strahl and halo classification in
slow wind in Fig. 5. We see that the number of blue points, asso-
ciated with the strahl, is much reduced in the slow wind than
in the fast wind (see Fig. 4). This finding is consistent with the
observed lower occurrence of strahl during times of slow solar
wind (e.g. Gurgiolo & Goldstein 2017). Both Figs. 4 and 5 con-
firm that only halo electrons exist at pitch angles around 90◦.
We see for both fast and slow wind cases that the strahl exhibits
higher differential energy fluxes than the halo. The scattering of
strahl electrons into the halo results in a larger spread of elec-
trons across all pitch angles, decreasing the peak flux at any one
pitch angle.

2.5. Calculating relative number densities

After classifying the dataset into core, halo and strahl regions,
we calculate the differential energy flux attributed to each popu-
lation. In order to account for halo electrons in strahl pitch angle
and energy bins, we subtract the halo flux, averaged over all pitch
angles at a fixed energy, from strahl fluxes at that energy and
assign it to the total halo flux. Differential energy flux relates to
the partial number density (cm−3) of each electron population as
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Fig. 2. Two-dimensional colour plot of the mea-
sured electron differential energy flux, across
a 4 second window (08:57:28–08:57:32 on
02/03/2004) during our fast wind regime. The
data are plotted as a function of pitch angle
(degrees) and energy (eV), across an energy range
of ∼44 eV to ∼540 eV. The vertical and horizon-
tal white dashed lines represent where cuts are
made to obtain: (a) the pitch angle distribution
at 110.09 eV, and (b) the energy distribution at
127.5◦.

(a) (b)

Fig. 3. Left panel: pitch angle distri-
bution at an energy of 110.09 eV. Right
panel: energy distribution at a pitch angle
of 127.5◦ as projected from the vertical
and horizontal white lines in Fig. 2. (a)
Pitch Angle Distribution at 110.09 eV. (b)
Energy Distribution at 127.5◦

Fig. 4. 3D scatter plot of the differential energy
flux as a function of pitch angle and energy, for
the fast solar wind dataset. The colours define
whether the K-means clustering algorithm labels
each bin as either containing strahl and halo flux
(blue) or only halo flux (red).

according to Eq. (5) (Wüest et al. 2007):

∆n ≈ 5.4 × 10−10 E−
3
2 ∆E ∆Ω J (cm−3), (5)

where E is the average energy within interval ∆E (both mea-
sured in keV/Q) and J is the average differential energy flux
(keV cm−2-s-str-keV) at energy E. ∆Ω is the solid angle (≤4π)
over which J is measured and relates to the pitch angle widths.

In Fig. 6, we show the conversion of differential energy flux
to number density. In slow wind: the ratio ns/nh = 0.003 and

(ns +nh)/nc = 0.025 where ns, nh and nc represent the strahl, halo
and core number densities. In intermediate wind: ns/nh = 0.53
and (ns + nh)/nc = 0.043 while in fast wind: ns/nh = 0.79 and
(ns + nh)/nc = 0.094.

Our calculated densities are of the same order as those deter-
mined by Štverák et al. (2009), who found (ns + nh)/nc =∼0.1
and 0.04–0.05 in fast and slow wind respectively. This test con-
firms that our algorithm is capable of differentiating between
solar wind electron populations to a similar degree as previous
results, with a very different method.
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Fig. 5. 3D scatter plot of the differential energy flux as a
function of pitch angle and energy, for the slow solar wind
dataset.

Fig. 6. ns/nh and (ns + nh)/nc ratios for slow, medium and fast solar
wind.

3. Statistical study

3.1. Methodology

We then used ten years of pristine solar wind data, from 2001
to 2010, to quantify the relationship between strahl and halo
breakpoint energies and other solar wind parameters, notably
solar wind speed and core temperature. By quantifying the halo
and strahl breakpoint energies separately, we determine if each
suprathermal population is governed to the same extent by ambi-
ent conditions, or if they scale with each bulk parameter dif-
ferently. For this study, we use Cluster-PEACE data in units of
phase space density and split the data into four-minute intervals.
The average solar wind speed during each interval is recorded
using CIS measurements.

To confirm that Cluster is in the pristine solar wind, we used
Cluster-FGM measurements and a model of the Earth’s bow
shock position (Chao et al. 2002). We use this model to identify
when the spacecraft is outside the bow shock and not magneti-
cally connected to it. We ensure Cluster is magnetically discon-
nected from the Earth’s bow shock by discarding times when the
magnetic field vector at Cluster intersects with the bow shock
surface at any point.

We calculate the halo breakpoint energy, during each four-
minute interval, by applying K-means clustering to phase space
density values at 90◦ pitch angles, over a range of energies
from 19 eV to 240 eV. Calculating the strahl/core breakpoint
energy entails applying these K-means models to pitch angles
and intervals which contain strahl. We achieve this by classifying

flux-energy distributions during each interval, using the method
in Sect. 2.4, to determine if strahl is present at 0◦ or 180◦.

We fit a Maxwellian velocity distribution function
(Štverák et al. 2008) to core velocities below each strahl
or halo breakpoint energy, to determine the core temperature at
that particular pitch angle. This function takes the form:

fc = nc

( m
2πk

)3/2 1

Tc⊥
√

Tc‖
exp

− m
2k

 v2
⊥

Tc⊥
+
v2
‖

Tc‖

, (6)

where nc is the core density, m the electron mass, k is Boltz-
mann’s constant, Tc⊥ and Tc‖ are the core perpendicular and
parallel temperatures and v⊥ and v‖ are the perpendicular and
parallel velocities.

3.2. Results

Figure 7 shows the halo breakpoint energy vs. core temperature
distribution in a “violin plot” to visualise the distribution of data
points after binning the data into widths of 50 km/s−1. A violin
plot is similar to a box plot, with the addition that the horizontal
extend of each violin element represents a density plot of the
data at different values. The red regions in Fig. 7 visualise these
density plots.

The widths of the red regions show that data are clus-
tered about certain energies across all wind speeds. These
regions of higher density in fact point to the energy chan-
nels (30.1 eV, 37.7 eV, 47.9 eV, 56.7 eV and 70.5 eV) within
the C2-PEACE instrument’s dataset. Figure 7 shows a clear
positive correlation between halo breakpoint energy and core
temperature, kBTc, with a gradient of 5.74± 0.09. A statistical
P-test produces a p-value of <0.0001, showing this relation-
ship is significant at the p = 0.05 (5%) level (Rice 1990).
The R-squared value of 0.626 indicates ∼63% of variation in
halo breakpoint energy can be described by this correlation.
Very small inter-quartile ranges are observed in the 1–2 eV and
5–6 eV bins, while large inter-quartile ranges are observed in
bins 4–5 eV and 6–7 eV. The results for the strahl breakpoint
energy vs. core temperature are shown in Fig. 8.

In both Figs. 7 and 8, there is small discrepancy between
the line of best fit and the median at core temperatures between
2 eV and 8 eV. When Tc < 2 eV, the linear fit underestimates all
of the measured breakpoint energies, lying below the lower quar-
tile range in both cases. In the strahl’s case, the median and
upper quartile at Tc > 8 eV drop significantly below the line of
best fit. Figure 8 suggests the dependence between core tem-
perature and halo and strahl breakpoint energies differs. This is
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Fig. 7. “Violin plot” of halo breakpoint energy against core temper-
ature. The blue line shows the line of best fit. The white dots indi-
cate the median of breakpoint energies and the thick black lines show
the inter-quartile ranges (IQR). We plot the thin black lines to display
which breakpoint energies are outliers. They span from Q3 + 1.5× IQR
to Q1− 1.5× IQR, where Q3 and Q1 are the upper and lower quartiles,
respectively. The horizontal width of the red regions represents the den-
sity of data points at that given breakpoint energy.

Fig. 8. “Violin plot” of strahl breakpoint energy against core tempera-
ture. The orange line shows the line of best fit. The remaining features
are the same as in Fig. 7.

evidenced by the strahl breakpoint energy relation exhibiting a
smaller gradient (5.5± 0.1) and larger variance, based on the
R-squared value of 0.51, with Tc than the halo’s relation. A
p-value of <0.0001 suggests that this positive correlation
between strahl breakpoint energy and core temperature is also
highly significant at the p = 0.05 level.

Figure 9 shows the results of our study to determine the rela-
tionship between halo breakpoint energy and solar wind speed.
The collisionality of the solar wind plasma varies with its veloc-
ity, with slow wind typically exhibiting a higher collisional-
ity than fast wind (Scudder & Olbert 1979; Lie-Svendsen et al.
1997; Salem et al. 2003; Gurgiolo & Goldstein 2017). There-
fore, comparing breakpoint energy to solar wind velocity pro-
vides useful information on the scaling of breakpoint energy
with the collisionality of the ambient plasma. Solar wind veloc-
ity is also a good indicator of the origin of the solar wind
(Geiss et al. 1995; Habbal et al. 1997), enabling us to inves-
tigate if breakpoint energy profiles vary with differing solar
wind source regions. The gradient in Fig. 9 is −5.9± 0.1 eV per
100 km s−1. The R-squared value of 0.487 is lower than 0.626 in
Fig. 7, indicating that halo breakpoint energy exhibits a stronger

Fig. 9. “Violin plot” of halo breakpoint energy against solar wind speed.
The blue line shows the line of best fit. The remaining features are the
same as in Fig. 7.

correlation with core temperature than with solar wind speed.
A statistical P-test produces a p-value of <0.0001, showing this
relationship is significant at the p = 0.05 (5%) level.

The distribution of breakpoint energies with wind speed in
Fig. 9 displays a step function at about 500 km s−1. The lower
quartile within the 450–500 km s−1 bin lies above the upper
quartiles in faster speed bins. Fitting two linear fits to solar
wind speeds below and above 500 km s−1 separately produces
gradients of −4.2± 0.1 eV per 100 km s−1 and −3.5± 0.1 eV per
100 km s−1 respectively. The associated R-squared values are
0.588 and 0.651 respectively; both larger than a value 0.487 for
a single linear fit, indicating that two separate correlations bet-
ter describe the distribution in Fig. 9 than a single correlation.
The two correlations are also significant at the p = 0.05 (5%)
level. The data-points in Fig. 9 are distributed along a larger
range of breakpoint energies at lower wind speeds than higher
wind speeds. However, according to the inter-quartile ranges for
the majority of data-points, the variance about the median val-
ues is relatively small, with the exception of a few outliers. The
medians themselves do not deviate significantly from the line of
best fit across all wind speeds, with the largest median residual
equalling 5 eV in the <300 km s−1 bin. There is some evidence
for positive or negative skewness at certain solar wind velocities,
such as in the <300 km s−1 and 400–450 km s−1 bins, as can be
seen when the median appears to lie on one of the edges of the
inter-quartile range.

Figure 10 shows the strahl breakpoint energy variation
with solar wind speed. According to our linear fit, the rate of
decrease of strahl breakpoint energy with solar wind speed is
−5.7± 0.1 eV per 100 km s−1. Solar wind speed has a smaller
correlation with strahl breakpoint energy than halo breakpoint
energy, based on the steepness of each gradient and R-squared
values. This R-squared value of 0.460 in Fig. 10 also indicates
that the strahl breakpoint energy has a weaker correlation sta-
tistically with solar wind speed than with core temperature, as
the line of best fit describes less of the variation. This is also the
case for the halo breakpoint energy. A p-value of <0.0001 indi-
cates that this negative correlation is also highly significant at the
p = 0.05 level.

Similar to Fig. 9, the variation in breakpoint energy in the
strahl violin plot is larger at smaller wind speeds. However,
unlike for halo, the 400–450 km s−1 bin has a much larger vari-
ance than the <300 km s−1 bin, as evidenced by their inter-
quartile ranges. This larger spread of data at medium wind
speeds explains why the strahl’s R-squared value is lower than
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Fig. 10. “Violin plot” of strahl breakpoint energy against solar wind
speed. The orange line shows the line of best fit. The remaining features
are in the same format as Fig. 7.

Table 1. Correlations between halo and strahl breakpoint energies with
core temperature, Tc and solar wind speed, Vsw, as represented by the
gradients and R-squared, R2, values.

Tc Vsw

Population Ebp/Tc R2 Ebp/Vsw R2

[eV/(km s−1)]

Halo 5.74 0.626 −0.059 0.487
Strahl 5.5 0.51 −0.057 0.460

the halo’s. The lack of skewness in Fig. 10 shows that the data
are distributed more symmetrically in the strahl’s case than the
halo’s. The sum of the median residuals are also smaller for
the strahl, with the largest median residual at 3.5 eV in the
<300 km s−1 solar wind speed bin. A step function is less appar-
ent in Fig. 10, however there is a clear distinction between
the median breakpoint energy relation with wind speed in slow
winds (<450 km s−1), compared to fast winds. Table 1 con-
tains the gradients and R-squared values of the correlations in
Figs. 7–10.

4. Discussion

In this study, we use the K-means algorithm to successfully dis-
tinguish between the three populations and we train a supervised
learning algorithm (K-nearest neighbours) to classify a subset of
the pitch angle and energy distributions. There is a strong agree-
ment between the two machine learning methods, allowing us to
apply the K-means clustering method to a larger subset of solar
wind electron data at different solar wind velocities. Machine
learning algorithms provide us with an efficient method of clas-
sification from which small scale variations of electron popula-
tions in relation to energy and pitch angle can be derived. By
classifying a single distribution at each time step, we build up
a high resolution picture of suprathermal breakpoint energy and
relative number density, including how they evolve with differ-
ent parameters. The techniques we employ can be easily applied
to any classification problem where sufficient data are available.

Distinguishing between strahl, halo, and core electron pop-
ulations allows us to calculate their relative number densi-
ties, in order to compare our method to previous results.
Štverák et al. (2009) show that suprathermal electrons in the fast

wind constitute ∼10% of the total electron number density, while
in slow wind they occupy 4% to 5% of the total electron den-
sity. In comparison, we obtain values of ∼9.4% and 2.5–4.3%
for fast and slow wind respectively. Obtaining densities of the
same order as Štverák et al. (2009) confirms that our method is
capable of distinguishing between multiple solar wind electron
populations to a similar degree as alternative methods. Being a
zeroth order moment, there is a smaller level of uncertainty when
calculating the density, as opposed to the breakpoint energy or
higher order moments, by fitting distribution functions. Using
machine learning techniques instead of fitting bi-Maxwellian
and bi-Kappa functions to electron velocity distributions, which
involves fixing certain parameters (Štverák et al. 2009), elim-
inates the need to use prior assumptions about these solar
wind electron populations. Therefore, our new method results in
more robust estimations of the solar wind electrons’ breakpoint
energies.

The observation that the majority of the halo population is
formed due to strahl scattering (Saito & Gary 2007; Pagel et al.
2007; Štverák et al. 2009) explains the relationship between
ns/nh and wind speed in Fig. 6. Strahl in slow solar wind
undergoes more scattering per unit distance than in faster
wind (e.g. Fitzenreiter et al. 1998), leading to a higher value
of nh/ne at 1 au. We observe a near absence of strahl in
very slow solar wind at velocities of 308 km s−1 (see Figs. 5
and 6), which is consistent with observations from previous stud-
ies (e.g. Fitzenreiter et al. 1998; Gurgiolo & Goldstein 2017;
Graham et al. 2018). By analysing a number of periods of slow
solar wind, Fitzenreiter et al. (1998) find that the strahl gen-
erally has a larger width in slow solar winds than fast, while
Gurgiolo & Goldstein (2017) find that strahl is often not present
at solar wind velocities .425 km s−1. Graham et al. (2018) also
note an absence of strahl during certain slow solar wind times.
This absence of strahl remains unexplained. Possible hypotheses
include: Coulomb pitch angle scattering which counteracts mag-
netic focussing effects during strahl formation (Horaites et al.
2018), intense scattering due to broadband whistler turbulence
(Pierrard et al. 2001), and the lack of initial strahl formation dur-
ing the production of slow solar wind (Gurgiolo & Goldstein
2017).

Instead of finding the intersection between core and supra-
thermal fitting functions (e.g. Pilipp et al. 1987b; McComas et al.
1992; Štverák et al. 2009), a method which according to
McComas et al. (1992) produces “somewhat arbitrary” values,
our method calculates the breakpoint energy based on the data
recorded in each individual pitch angle and energy bin. Our
method calculates breakpoint energy values of both sunward and
anti-sunward strahl, occasionally obtaining two strahl breakpoint
energy values at a single time if bi-directional strahl is present.
An alternative method is presented by Štverák et al. (2009) who
discard sunward strahl in their calculations of the strahl Ebp/kBTc
ratio at each radial distance. By characterising both sunward
and anti-sunward strahl, our method significantly improves the
characterisation of all electron beams in the solar wind.

Our work on the core velocity distribution functions eluci-
dates the relative correlation between core temperature, Tc, and
both halo and strahl breakpoint energies. Using core temperature
as a reference point enables us to predict to what extent strahl
and halo characteristics scale to characteristics of the core. The
core temperature has a strong correlation with both suprathermal
breakpoint energies, with the halo breakpoint energy exhibit-
ing a closer correlation than the strahl’s. Both halo and strahl
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breakpoint energies statistically have a stronger correlation with
core temperature than with solar wind speed. The gradients
between breakpoint energy and core temperature are calculated
as 5.74± 0.09 and 5.5± 0.1 for halo and strahl respectively.

The linear relationship that we observe between break-
point energy and core temperature is in line with previous
measurements (e.g. McComas et al. 1992; Štverák et al. 2009),
for both the halo and strahl. According to Scudder & Olbert
(1979), a linear trend in the halo relation also follows under
the assumption that binary Coulomb collisions dominate elec-
tron dynamics in the solar wind. However, in order to align
with available experimental data, Scudder & Olbert (1979) set
a scaling factor of Ebp/kBTc = 7, which differs from our scal-
ing factor of Ebp/kBTc = 5.5± 0.1. With a scaling factor of
Ebp/kBTc = 7, Scudder & Olbert (1979) predict that a trans-
formation of thermal electrons into the suprathermal popula-
tion occurs as the solar wind flows out from the Sun. Find-
ings by Štverák et al. (2009), on the other hand, show that the
(nh + ns)/nc ratio remains roughly constant with heliocentric
distance in the slow wind, suggesting a lack of interchange
between the thermal and suprathermal populations. However
Štverák et al. (2009) observes some variability in the (nh +ns)/nc
ratio in the fast wind, which they attribute to either statisti-
cal effects due to a lack of samples or a possible “interplay”
between thermal and suprathermal electrons. Scudder & Olbert
(1979) also predict that the halo Ebp/kBTc ratio remains con-
stant with heliocentric distance, whereas Štverák et al. (2009)
find that the halo Ebp/kBTc ratio decreases with heliocentric dis-
tance. These findings by Štverák et al. (2009), along with the dis-
crepancy between our calculated ratio of Ebp/kBTc = 5.5± 0.1
and the prediction of Ebp/kBTc = 7, suggest that the model of
Scudder & Olbert (1979) requires a minor update to either the
theory or to the input parameters. The discrepancy, however,
may also be indicative of other processes, such as wave-particle
scattering (e.g. Gary et al. 1994), that possibly modifies the ratio
between breakpoint energy and core temperature while preserv-
ing its linear relationship.

In our statistical study, we find that both strahl and halo
breakpoint energies decrease with solar wind speed. At all solar
wind velocities, as well as core temperatures, the halo break-
point energy is larger than the strahl’s at equivalent veloci-
ties and temperatures. The halo breakpoint energy exhibits a
higher correlation with the solar wind speed than strahl. The
anti-correlation between the two parameters corresponds with
the finding that (nh + ns)/nc increases with solar wind speed
(Štverák et al. 2009), where nh, ns and nc represent the halo,
strahl, and core number densities. Assuming all plasma param-
eters are kept constant, except for the core density and tem-
perature, the relative density of suprathermal electrons will
increase if the breakpoint energy decreases. This observed rela-
tionship between solar wind speed and electron ratios is most
likely a result of the lower collisionality of fast solar wind
(Scudder & Olbert 1979; Lie-Svendsen et al. 1997; Salem et al.
2003; Gurgiolo & Goldstein 2017), which results in more dis-
tinctive non-thermal features of the electron velocity distribution
function. Further work is required to analyse whether different
breakpoint energy relations exist that depend on the source of
solar wind. Initial findings in this paper suggest the existence
of two distinct relationships in the halo breakpoint energy vs.
wind speed distribution, with a step function at 500 km s−1. This
finding links to a sharp distinction between fast and slow solar
winds (Feldman et al. 2005). Therefore the origin of the solar
wind, i.e., coronal holes for fast wind or streamer belt regions

for slow wind, potentially plays a role in the definition of ther-
mal and non-thermal electron populations. A step function is less
obvious in the strahl breakpoint energy vs. solar wind speed dis-
tribution.

5. Conclusions

In this study, we apply unsupervised K-means clustering algo-
rithms to Cluster-PEACE data to separate solar wind electron
pitch angle and energy distributions into the core, halo, and strahl
populations. This enables us to perform an accurate statistical
analysis of strahl and halo breakpoint energies. In our statistical
study, we compare the relationship between core temperature,
Tc and both halo and strahl breakpoint energies. We present a
strong correlation between suprathermal breakpoint energies and
Tc, and conclude this is due to core temperature being a deter-
mining factor for breakpoint energy. As a result of higher core
temperatures, the Maxwellian part of the total electron velocity
distribution function, which represents the core, extends across
a wider range of velocity space (Pilipp et al. 1987b). The core
distribution therefore overlaps with the halo and strahl at higher
energies and thus increases the suprathermal breakpoint energy.

We find that halo breakpoint energy remains larger than
the strahl’s across all temperatures. This difference between
halo and strahl breakpoint energies suggests that there are cer-
tain energies, below the halo breakpoint energy, at which a
strahl and core population are both present. At these ener-
gies, strahl dominates at parallel pitch angles and core dom-
inates at perpendicular pitch angles. Wave-particle scattering
processes (Gary et al. 1994; Vasko et al. 2019; Verscharen et al.
2019) scatter these low energy strahl electrons to higher per-
pendicular velocities and smaller parallel velocities. At suffi-
ciently high core temperatures, these strahl electrons would be
absorbed by the core population (Pilipp et al. 1987c), instead
of the higher energy halo population. The absorption of strahl
electrons by the core increases the number of Coulomb colli-
sions (Landi et al. 2012), which then leads to an increase in core
temperature (Marsch & Goldstein 1983; Boldyrev et al. 2020).
This scenario is consistent with previous studies (Pilipp et al.
1987a) which show a transfer of electron kinetic energy from
the parallel to perpendicular direction, increasing core temper-
ature in the perpendicular direction. The increase of core tem-
perature, due to the absorption of strahl electrons, acts to extend
the core component of the electron velocity distribution function
to higher velocities (Pilipp et al. 1987b), therefore increasing the
halo breakpoint energy at pitch angles at which the strahl is not
present. This phenomenon explains the larger difference between
strahl and halo breakpoint energies at higher core temperatures,
as a larger difference in breakpoint energy means more strahl
electrons are scattering into the core population rather than the
halo population.

This work signifies the first extensive study in characterising
the relation between breakpoint energy and solar wind speed, for
each of the suprathermal populations. Our results show there is
a significant decrease in both halo and strahl breakpoint ener-
gies with increasing solar wind speed, with the halo relation
exhibiting a stronger correlation. We find two distinct relation-
ships in the halo breakpoint energy vs. solar wind speed distri-
bution, with a step function at 500 km s−1. We predict this step
function relates to the difference in origin of fast and slow solar
wind electrons (Feldman et al. 2005). Further investigation, with
the aid of new facilities provided by the Parker Solar Probe and
Solar Orbiter missions, can test this prediction and investigate
why the step function is prevalent in the halo breakpoint energy
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relationship but not in the strahl breakpoint energy relationship
with solar wind speed. In future studies, using Solar Orbiter
measurements at smaller heliocentric distances will allow us
to better characterise halo and strahl breakpoint energies and
improve our understanding of their dependence on bulk solar
wind parameters.
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