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Abstract

Energy dissipation in collisionless plasmas is a long-standing fundamental physics problem. Although it is well
known that magnetic reconnection and turbulence are coupled and transport energy from system-size scales to
subproton scales, the details of the energy distribution and energy dissipation channels remain poorly understood.
Especially, the energy transfer and transport associated with 3D small-scale reconnection that occurs as a
consequence of a turbulent cascade is unknown. We use an explicit fully kinetic particle-in-cell code to simulate
3D small-scale magnetic reconnection events forming in anisotropic and decaying Alfvénic turbulence. We
identify a highly dynamic and asymmetric reconnection event that involves two reconnecting flux ropes. We use a
two-fluid approach based on the Boltzmann equation to study the spatial energy transfer associated with the
reconnection event and compare the power density terms in the two-fluid energy equations with standard energy-
based damping, heating, and dissipation proxies. Our findings suggest that the electron bulk flow transports thermal
energy density more efficiently than kinetic energy density. Moreover, in our turbulent reconnection event, the
energy density transfer is dominated by plasma compression. This is consistent with turbulent current sheets and
turbulent reconnection events, but not with laminar reconnection.

Unified Astronomy Thesaurus concepts: Solar magnetic reconnection (1504); Interplanetary turbulence (830)

1. Introduction

The solar wind in the inner heliosphere is a weakly
collisional, turbulent plasma in which the energy is transported
from large (∼109 km) to small (∼10−1 km) scales via an active
turbulent cascade (Coleman 1968; Marsch & Tu 1990).
Although the collisionless nature of the solar wind precludes
classical viscous dissipation of these turbulent fluctuations, the
nonadiabatic evolution of the solar wind (Gazis &
Lazarus 1982; Matteini et al. 2007; Hellinger et al. 2011)
suggests the action of local heating mechanisms (Barnes 1968;
Goldstein et al. 2015). The plasma physics processes
responsible for this heating are not fully understood yet. The
observed velocity distribution functions of the solar wind
species often exhibit nonthermal features (e.g., Feldman et al.
1975, 1978; Marsch et al. 1982; McComas et al. 1992).

Important progress has been made to understand heating and
energy dissipation (e.g., Gary 1999; Howes et al. 2017; Klein et al.
2017; Matthaeus et al. 2020). Landau damping, ion cyclotron
damping, and stochastic heating are considered collisionless
dissipation mechanisms that transfer energy from the electro-
magnetic field to the plasma particles (Marsch et al. 2003; Kasper
et al. 2008; Chandran et al. 2010, 2013). The dissipation occurs
predominantly in intermittent structures that form in plasma
turbulence (Matthaeus et al. 1999; Kiyani et al. 2015).

Like turbulence, magnetic reconnection is a process that
emerges on a broad range of scales and under a large variety of
plasma conditions. Magnetic reconnection occurs when magnetic
structures form regions in which the frozen-in condition is locally
broken, allowing the exchange of particles between the magnetic
structures (Hesse & Schindler 1988; Schindler et al. 1988).
Magnetic reconnection and turbulence are closely linked.

Magnetic reconnection self-consistently occurs as a conse-
quence of the turbulent cascade (Servidio et al. 2010; Loureiro
& Boldyrev 2020; Agudelo Rueda et al. 2021), and turbulence
emerges in current sheets, exhaust flows, electron streamers,
and shocks associated with reconnection events (Kowal et al.
2017; Pucci et al. 2017; Lapenta et al. 2020). During magnetic
reconnection, plasma particles are heated and accelerated while
the magnetic field topology changes (Pontin 2011; Zweibel &
Yamada 2016; Lazarian et al. 2020).
The role of magnetic reconnection for the evolution of

energy in collisionless plasmas is unclear. Although magnetic
reconnection transports energy from large to small scales
(Sundkvist et al. 2007; Franci et al. 2017; Loureiro &
Boldyrev 2020), the details of the energy transport across
scales and the role of reconnection in the turbulent cascade are
a matter of ongoing research (Franci et al. 2017; Loureiro &
Boldyrev 2017; Adhikari et al. 2021). The energy transfer
between fields and particles, and the transfer between kinetic
and thermal degrees of freedom during reconnection are the
key objectives of this research area.
The energy transfer and transport associated with magnetic

reconnection have been addressed by previous studies that
focus on idealized 2D Harris current sheet reconnection
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(Yin et al. 2001; Schmitz & Grauer 2006; Wang et al. 2015;
Pezzi et al. 2021), 3D laminar collisionless reconnection in the
context of magnetospheres (Wang et al. 2018), and 2D
reconnection in turbulent plasma (Fadanelli et al. 2021). In
this work, we use particle-in-cell (PIC) simulations to study the
energy transfer associated with 3D small-scale magnetic
reconnection that self-consistently occurs as a consequence of
an anisotropic turbulent cascade. In Section 2, we present our
theoretical framework to study the energy transfer and transport
in our plasma simulations. In Section 3, we present our
simulation results, emphasizing the presence of agyrotropy in
Section 3.3 and the energy distribution in Section 3.4. In
Section 4, we discuss the implications of our results. In
Section 5, we provide our conclusions.

2. Energy Transfer and Transport

The total energy in a closed volume of plasma is partitioned
among the particles and the electromagnetic fields. The bulk
kinetic energy density of the particle species s is associated
with the first velocity moment of the particle velocity
distribution function fs= fs(x, v, t) and therefore with the bulk
flux of the particles. The thermal energy density is associated
with the second velocity moment and thus the pressure of the
particles. The evolution of fs follows the Boltzmann equation
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where v is the velocity, E is the electric field, B is the magnetic
field, qs is the charge of a particle, and ms is the mass of a
particle. The term ¶ ¶f ts c( ) on the right-hand side represents
the change in the distribution function due to collisions. This
term includes individual correlations between fields and
particles, based on the particles’ individual Coulomb potentials
(Klimontovich 1997). To study the energy transport, we derive
a set of energy equations based on the Boltzmann Equation (1).
We first define the density
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where (v− us)(v− us) is the dyadic product. We define the heat
flux vector
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We define the first moment of the collision term in Equation (1)
as

òX =
¶
¶

v
f

t
d v 6s

c

1 3 ( )⎛
⎝

⎞
⎠

and the second moment as

òX =
¶
¶

vv
f

t
d v. 7s

c

2 3 ( )⎛
⎝

⎞
⎠

With these definitions, we compute the first and second
moments of Equation (1) (see the Appendix for details). The
first moment of Equation (1) yields the kinetic energy equation
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represents the irreversible kinetic energy transfer. The terms
u Ps s· · , e  us

k
s· , and the advective term eus s

k( · ) are
associated with the term v ·∇fs in Equation (1). Therefore,
these terms represent kinetic energy density transport due to the
free streaming of particles. Conversely, the term− qsns(us ·E),
associated with the electric field, represents the energy density
transfer between particle bulk flows and fields.
The second moment of Equation (1) yields the thermal

energy equation
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represents the irreversible thermal energy transfer. The
expression Tr stands for the trace of a tensor, and u P:s s is
the double contraction of the strain tensor ∇us and Ps . The
terms ∇ · hs, u P:s s , and e  us s

th · , associated with v ·∇fs in
Equation (1), represent thermal energy density transport due to
the free streaming of particles.
The terms on the left-hand sides of Equations (8) and (11)

describe collisionless processes, whereas the terms on the right-
hand sides describe collisional processes in the plasma that
generate an increase in the plasma entropy.
Equations (8) and (11) alone do not capture total energy

conservation because they do not account for the rate of change
in the electromagnetic energy density ∂εem/∂t, nor for the
electromagnetic energy flux ∇ · S, where

e
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is the electromagnetic energy density and S=E×B/μ0 is the
Poynting vector. The expression that accounts for these
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changes is Poynting’s theorem

e¶
¶

+  + =S J E
t

0. 15
em

· · ( )

Nevertheless, Equations (8) and (11) are exact in their
description of the kinetic and thermal energy density transfer
and transport, as well as the energy density exchange between
fields and particles.

Before tackling the energy transfer problem, we explicitly
define the following three terms, which are often used
interchangeably in the literature:

1. Heating is any increase in es
th, and cooling is any decrease

in es
th. Heating can be either reversible or irreversible.

2. Damping is any decrease in εem, and growth is any
increase in εem. Damping/growth can be either reversible
or irreversible.

3. Dissipation is any irreversible energy transfer leading to
an increase in es

th.

Dissipation corresponds to an increase in entropy of the
velocity distribution function, which is challenging to quantify
directly both in space measurements and in simulations.
Nonetheless, recent studies (Pezzi et al. 2019; Matthaeus
et al. 2020; Pezzi et al. 2021) show that in collisionless plasmas
energy-based dissipation proxies such as the Zenitani para-
meter (Zenitani et al. 2011)

= + ´ -J E u B u ED n q , 16zs s s s s· ( ) ( · ) ( )

and the strain pressure interaction u P:s s (Yang et al. 2017)
are spatially correlated with dimensionless measures of
nonthermal distribution functions (Kaufmann & Paterson 2009;
Greco et al. 2012; Liang et al. 2019) and plasma agyrotropy
(Scudder & Daughton 2008). In Equation (16), J=
∑s=i,eqsnsus is the electric current density.

These energy-based dissipation proxies are effectively power
density terms derived from the left-hand sides of our
Equations (8) and (11). According to our definitions, Dzs is a
damping measure since it quantifies the energy transfer from
the electromagnetic fields into bulk kinetic energy and
vice versa.

The strain tensor interaction has gyrotropic and agyrotropic
contributions. We decompose the pressure tensor as
Pij,s= psδij+Πij,s, where
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is the deviatoric pressure. Likewise, the strain rate tensor ∇us
can be expressed as ∇uij,s= θsδij/3+Dij,s, where θs=∇ · us
represents the dilatation term and
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represents the symmetric traceless strain rate tensor (Yang et al.
2017). Thus, the strain tensor interaction, which is a heating/
cooling proxy according to our definitions, is

q = + Pu P p D: , 20s s s s ij s ij s, , ( )

where the first term on the right-hand side is known as pθs and
the second term on the right-hand side is known as Pi−Ds

(Yang et al. 2017). For comparison with previous studies
(Bandyopadhyay et al. 2020; Pezzi et al. 2021), in Section 3.6
we compute Dij,s, psθs, and Πij,sDij,s and compare them with the
energy transfer and transport terms, − nsqs(us ·E) and u P:s s ,
in Equations (8) and (11).

3. Simulation Results

3.1. Simulation Setup

We use the explicit Plasma Simulation Code (PSC; Ger-
maschewski et al. 2016) to simulate anisotropic Alfvénic
turbulence in an ion−electron plasma in the presence of a constant
background magnetic field =B zB0 0 ˆ. The simulation domain is
an elongated box of size Lx× Ly× Lz= 24di× 24di× 125di with
spatial resolution Δx=Δy=Δz= 0.06di, where di= c/ωpi is the
ion inertial length, c is the speed of light, w = n q mpi i i0

2
0 is

the ion plasma frequency, and n0 is the constant initial ion density.
The background ion Alfvén speed ratio in our simulations is
vA,i/c= 0.1, where m=v B n mi iA, 0 0 0 is the ion Alfvén speed.
The number of macro particles per cell is 100 ions and 100
electrons. We use a mass ratio of mi/me= 100 so that de=
0.1di. We set the initial thermal-to-magnetic energy ratio
b m= =n k T B2 1s s0 0 B 0

2 , where Ts is the temperature of species
s and kB is the Boltzmann constant. The details of the simulation
setup and the overall simulation results are presented by Agudelo
Rueda et al. (2021), where the authors report a reconnection event
that involves two reconnecting flux ropes.

3.2. Reconnection Event Overview

Panel (a) in Figure 1 shows the volume rendering of the
current density in our simulation domain at the simulated time

w= -t 120 pi
1. Current filaments that form in the turbulent

cascade are mostly elongated along the direction of the
background magnetic field. At this time in the simulation, we
apply the set of indicators presented by Agudelo Rueda et al.
(2021) to identify and locate reconnection sites. We select one
reconnection event that involves two reconnecting flux ropes as
shown in panel (b) of Figure 1, where the magnetic field lines
are color-coded with |B|. The magnetic flux ropes contain an
intense magnetic field, especially the lower flux rope, which is
more twisted and has a smaller radius than the upper flux rope.
Conversely, the magnetic field between the flux ropes is weak.
The cuts in panel (b) show Jz in the x-y simulation plane. For
our analysis of this event, we apply a 2D cut in the x-y plane at
z= 77di. Panel (c) of Figure 1 shows the magnetic field lines of
the field components in the x-y plane, i.e., (Bx, By) as black
contours. Panel (c) illustrates the complexity of the magnetic
topology in the region of interest. For our energy analysis, we
select a volumetric subregion of size 10di

3 centered around the
identified reconnecting region. The green square in panel (c)
highlights the intersection of the selected subregion with the
central 2D cut from panel (b).
Even though the background field is in the z-direction, the

current structures are not exactly aligned with the z-direction.
Instead, the geometric features of the reconnection event are
aligned with the plane perpendicular to the current sheet that
sustains the magnetic gradient. Therefore, we determine a
reference frame (RF) that is aligned with the main axis of the
current sheet. We determine the direction of the main axis of
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the current sheet by 3D rendering Jz and measuring the
inclination of the coherent structure that crosses the point
x= 13.5di and y= 21.5di in the x-y plane. We then apply a
coordinate transformation from the RF (x, y, z) to a new
RF (r, p, a) aligned with the main axis of the current sheet. The
unit vectors of this RF are (r p a, ,ˆ ˆ ˆ). In this RF, â is antiparallel
to the main axis of the current sheet, p̂ is an arbitrary vector in

the plane perpendicular to â, and r̂ is the vector that completes
the right-handed coordinate system. Since the components r
and p are in the plane perpendicular to the current structure, we
denote them as the in-plane components.
In the following analysis, we use the RF (r, p, a) and select a

cubic region of size 10di
3. Although the event is 3D and the

magnetic field lines extend in three dimensions, we select a 2D

Figure 1. Spatial context of the reconnection event within the simulation domain. Panel (a) shows a volume rendering of |J|. Panel (b) shows the 3D magnetic field
lines color-coded with |B|. On the vertical cuts in panel (b), we show Jz. Panel (c) shows the magnetic field lines in the x-y plane. The black contours show in-plane
magnetic field lines. The green square highlights the size and position of the region for the energy analysis.

Figure 2. 2D cuts in the r-p plane at simulation time w= -t 120 pi
1. (a) Magnetic field magnitude |B|/B0. The black contours represent the in-plane magnetic field lines,

and the black stars represent two x-points. (b) Out-of-plane component magnetic field (Ba − Ba,0)/B0. The black arrows in this panel represent the in-plane magnetic
vectors (Brp). (c) Out-of-plane electron speed ua,e/vA,i. The black arrows in this panel represent the in-plane electron velocity vectors (urp,e/vA,i). (d) Out-of-plane ion
speed ua,i/vA,i. The black arrows in this panel represent the in-plane ion velocity vectors (urp,i). In all panels, the black square outlines the diffusion region.

4
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cut of the cubic region in the r-p plane similar to the green
square in panel (c) of Figure 1. This 2D cut is representative of
the reconnection event as we show in Section 3.3.

Panel (a) in Figure 2 shows the magnetic field magnitude in
the region of interest normalized to B0. The black contours
represent the in-plane magnetic field lines, which we compute
by creating an array of seed points placed on the vertices of a
squared grid in the r-p plane. Then, we use the in-plane
magnetic field vectors to create the streamlines. We propagate
the numerical integration in both directions: forward and
backward. Panel (b) in Figure 2 shows (Ba− Ba,0)/B0, where
Ba is the out-of-plane component of the magnetic field and

= B aBa,0 0 · ˆ is the projection of B0 on the a-direction. We
subtract Ba,0 to improve the visibility of the multipolar
configuration of this component. The black arrows in this
panel represent the in-plane magnetic field vectors

= +B r pB Brp r pˆ ˆ. In order for reconnection to occur, the in-
plane components of the magnetic fields of reconnecting
structures must have different directions. The plotted in-plane
magnetic field lines suggest the presence of effective
separatrices between regions of opposite Brp within the black
square.

The in-plane magnetic field lines in panel (a), along with the
direction of the in-plane magnetic field vectors, suggest the
presence of two x-points, which we mark with two black stars,
one located at r= 5.58di and p= 6.6di and the other at
r= 6.5di and p= 6.2di. We establish the position of the x-
points by identifying the saddle points of the in-plane magnetic
field. The magnetic configuration is complex, and the black
square outlines the central region in which the reconnection
occurs. Within this region, the magnetic field is nonuniform.
The subregion where |B|≈ 0 represents a null region. From
now on, we refer to the region enclosing the x-points as the
diffusion region. Since transverse 2D cuts to 3D magnetic flux
ropes resemble the geometry of magnetic islands, we now refer
to the magnetic field lines that are quasi-circular in panel (a) as
magnetic islands.

Panel (c) shows the out-of-plane component of the electron
velocity ua,e normalized to the ion Alfvén speed vA,i. The red
color indicates electrons moving out of the plane, whereas the
blue color indicates electrons moving into the plane. The black
arrows of this panel represent the in-plane electron velocity
vectors = +u r pu urp e r e p e, , ,ˆ ˆ. Within the region of interest,
there are counterstreaming electrons following the separatrices.
Likewise, we locate electrons streaming out of the plane
through the diffusion region. Within the magnetic islands, the
electrons stream into the plane. In most of the magnetic islands,
the electrons follow quasi-circular orbits owing to their
magnetization. However, in the magnetic island centered at
r= 4.5di and p= 2.2di, the electrons demagnetize and traverse
into the magnetic island connecting with the stream of electrons
at the edge of the magnetic island.

Panel (d) shows the out-of-plane component of the ion
velocity ua,i normalized to vA,i. The black arrows in this panel
represent the in-plane ion velocity vectors = +u r pu urp i r i p i, , ,ˆ ˆ.
Within the diffusion region, the out-of-plane ion velocity is
small, which suggests that the ion motion is mostly constrained
to the plane. The in-plane motion, however, is considerable,
and the ions move across the separatrices since they are
demagnetized.

3.3. Particle Agyrotropy in the Diffusion Region

During the reconnection of magnetic flux ropes, the plasma
expansion/contraction is not isotropic. Therefore, at kinetic
scales, the plasma pressure of each species can develop
anisotropy and agyrotropy. Figure 3 shows our pressure terms
according to Equations (17) and (18) for electrons and ions
normalized to =p n m vi i0 0 A,

2 . Panels (a) and (e) show the
isotropic scalar pressure for electrons pe and ions pi,
respectively. For both species, the scalar pressure is greater
inside the magnetic islands than outside owing to the large
density of particles (not shown here). Likewise, pe and pi
display gradients along and across the separatrices. We find
that pe is lower in the region between the magnetic islands and
between the x-points compared to inside the magnetic islands.
Panels (b), (c), and (d) of Figure 3 show the off-diagonal

components of the electron pressure tensor according to
Equation (18), Πra,e, Πpa,e, and Πpr,e, respectively. We here
introduce our notation 〈...〉 for the spatial average of a quantity
over a given domain. The averages over the subdomain of
|Πra,e|, as well as |Πpa,e|, 〈|Πra,e|〉, and 〈|Πpa,e|〉, are about 10%
of 〈pe〉. Πra,e and Πpa,e present a strong dipole-like configura-
tion centered on the magnetic islands. There is a shallower, yet
visible, gradient in Πra,e, Πpa,e, and Πpr,e in the region between
the islands and in the diffusion region. Conversely, Πpr,e

exhibits a quadrupolar configuration within the magnetic
islands. The nonzero values of Πra,e, Πpa,e, and Πpr,e show
that the plasma is agyrotropic, suggesting that small-scale
kinetic processes occur. Similar patterns are reported along the
separatrices of 2D collisionless reconnection (Yin et al. 2001;
Schmitz & Grauer 2006; Wang et al. 2015) and laminar 3D
collisionless reconnection (Wang et al. 2018). However, unlike
previous studies, we observe the same patterns within the
magnetic islands of turbulent 3D magnetic reconnection. This
is a fundamental difference between the reconnection that
occurs in turbulence and steady-state reconnection that occurs
in Harris current sheet configurations.
Panels (f), (g), and (h) of Figure 3 show the off-diagonal

components of the ion pressure tensor according to
Equation (18), Πra,i, Πpa,i, and Πpr,i, respectively. The off-
diagonal terms for ions, unlike electrons, have a less coherent
pattern attached to the in-plane magnetic field topology. The
reason for this detachment lies in the demagnetization of the
ions at these scales. Nevertheless, there is a gradient of these
terms suggesting agyrotropy effects in the ion dynamics
as well.
Figure 4 shows a magnification of the region enclosed by the

black square in Figure 2. Panels (a)−(d) show a magnification
of the electron pressure terms shown in panels (a)−(d) of
Figure 3. To make a direct comparison with previous 2D
studies, panels (e)−(h) show sketches summarizing known
patterns associated with the electron pressure components that
emerge from 2D collisionless reconnection in the absence of a
guide field (Yin et al. 2001; Schmitz & Grauer 2006; Wang
et al. 2015). In this region, unlike within the magnetic islands
of Figure 3, our simulation results of the electron pressure
patterns match those patterns shown in the sketches in panels
(e)−(h) in the region where the magnetic field has a local
minimum according to panel (a) in Figure 1. However, below
the x-point located at r= 5.58di and p= 6.6di, the pattern no
longer corresponds to the sketched expectations. Moreover,
Πpr,e is less coherent, and we do not recognize a clear
quadrupolar configuration as in the sketches for the 2D case.
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Figure 5 shows a 3D representation of the pressure
components for electrons in panels (a)−(d) and for ions in
panels (e)−(h). The 2D cut at a= 2.76di corresponds to the 2D
cut in Figure 3. The plotted 3D structures are isosurfaces of the
pressure component depicted on the 2D planes. For a given
quantity ψ, the value of the isosurfaces corresponds to
Sψ=± (〈|ψ|〉+ 2σ|ψ|), where σ|ψ| is the standard deviation of
|ψ|. The isosurfaces in panels (a)−(h) have the shape of
elongated and thin surfaces with local curvatures along the a-
axis. The agyrotropic patterns in Figure 3 extend for ∼5di
along the a-axis.

3.4. Energy Transfer and Transport

We use the power density expressions for the kinetic energy
in Equation (8) and the thermal energy in Equation (11) to
describe the energy transfer and transport associated with our
reconnection event. To compute the partial time derivatives of a
quantity, we use a central difference approach. Since the
Alfvén transit time is ∼100 w-

pi
1, a time resolution of 6 w-

pi
1 is

sufficient to capture the relevant dynamics of interest. To
estimate the spatial derivatives, we use a standard cell-centered
first-neighbors approach. We calculate all scalar products cell-

wise in the simulation domain. Panels (a)−(e) of Figure 6 show
2D cuts of each term in Equation (8) for electrons normalized
to e wD = m vpi i i0 A,

2 .
Panel (a) shows, at the simulation time w= -t 120 pi

1, the total

time derivative of the kinetic energy density ed dte
k . The

domain exhibits considerable temporal changes of the kinetic
energy density at the centers of the magnetic islands. We also
detect negative ed dte

k at the edge of the top left magnetic
island and positive ed dte

k in the diffusion region. Conversely,
there is almost no change in ee

th in the region between the x-
points.
Panel (b) shows the scalar product u Pe e· · , which

quantifies the change of kinetic energy due to the advection
of the pressure tensor. This energy change is transported by the
electron flow. The quantity u Pe e· · is also known as the
pressure work (Fadanelli et al. 2021). There is a strong
conversion of energy associated with the pressure work at the
center of the magnetic islands. However, the energy change
associated with this term is around 10 times greater than the
local ed dte

k . Unlike ed dte
k , at the edge of the top left

magnetic island, there is a strong gradient of u Pe e· · from

Figure 3. 2D cuts of the pressure tensor components in the r-p plane at the simulation time w= -t 120 pi
1. (a) Electron scalar pressure pe/p0. Off-diagonal components

of the electron pressure tensor: (b) Πra,e/p0, (c) Πpa,e/p0, and (d) Πpr,e/p0. (e) Ion scalar pressure pi/p0. Off-diagonal components of the ion pressure tensor: (f) Πra,i/
p0, (g) Πpa,i/p0, and (h) Πra,i/p0.
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the left-hand side of the magnetic island to the right-hand side.
In addition, u Pe e· · has a local minimum in the region
between the x-points.

Panel (c) shows e  ue
k

e· , which represents the kinetic
energy change due to divergent or convergent flow patterns in
the electron bulk velocity. Like for the previous terms,
e  ue

k
e· is greater at the center of the magnetic islands than

in the region between them. There is no noticeable gradient of
this term between the x-points. Although panels (a), (b), and (c)
show similar patterns in their signs, there are local differences,
especially in the diffusion region.

Panel (d) shows− qene(ue ·E), which represents the energy
exchange between the electrons and the electric field. We find a
considerable energy conversion not only within the magnetic
islands but also in the region between the islands, as well as in
the region between the x-points. In the region between the x-
points, the electrons gain kinetic energy from the electric field.
Along the separatrix next to the top left island, the electron bulk
motion is decelerated by the electric field. Comparing panels
(b) and (d), u Pe e· · and− qene(ue ·E) balance with each
other in the diffusion region.

Panel (e) shows Xs
k, which we compute as the sum of all

terms on the left-hand side of Equation (8). There are regions
with positive and negative Xe

k within the magnetic islands. On

the contrary, Xe
k is predominately positive within the diffusion

region and along the separatrices.
Although we do not include binary collisions in our code

explicitly, we acknowledge that the finite number of macro-
particles affects the system in a way similar to collisions and
leads to an undersampling of nonthermal fine structure in the
velocity distribution function, which generates a loss of
information and thus increase in entropy.
In a real plasma, binary collisions between particles drive the

system to a thermal equilibrium, thus smoothing out the
distribution function. Similarly, a finite number of particles
represents a low number of counts to compute the statistical
measures. Therefore, when computing macroscopic quantities,
the contribution from nonthermal particles is overshadowed by
the core distribution. It is effectively a coarse-graining effect,
similar to the actual effect of collisions, albeit on a different
timescale. However, this effect occurs earlier in PIC simula-
tions with a finite number of particles than in the real solar
wind. We conjecture that the impact is ultimately comparable.
Panels (f)−(j) of Figure 6 show 2D cuts of each term in

Equation (11) normalized to Δε0. Panel (f) depicts ed dte
th . As

in the kinetic energy case, ed dte
th has local extrema associated

with the magnetic islands. The main change in ed dte
th is due to

the advective term eue e
th( · ) . By direct comparison with panel

Figure 4.Magnification of the region delimited by the black square in Figure 2 in the r-p plane at the simulation time w= -t 120 pi
1. (a) Electron scalar pressure pe. Off-

diagonal components of the electron pressure tensor: (b) Πra,e, (c) Πpa,e, and (d) Πpr,e. Panel (e) shows a sketch of the patterns of the scalar pressure emerging in 2D
simulations of reconnection, and panels (f)−(h) show sketches of the off-diagonal terms of the electron pressure based on 2D Harris current sheet reconnection without
a guide field (Yin et al. 2001).
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Figure 5. 2D cuts in the r-p plane and isosurfaces of the pressure tensor components at the simulation time w= -t 120 pi
1. (a) Electron scalar pressure pe/p0. Off-

diagonal components of the electron pressure tensor: (b) Πra,e/p0, (c) Πpa,e/p0, and (d) Πpr,e/p0. (e) Ion scalar pressure pi/p0. Off-diagonal components of the ion
pressure tensor: (f) Πra,i/p0, (g) Πpa,i/p0, and (h) Πra,i/p0.
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(b), we note similar power density patterns between ed dte
th

and u Pe e· · .
For the heat flux term ∇ · he, we do not directly compute

∇ · he as a particle moment but use a Hammett−Perkins
approach (Hammett & Perkins 1990) to estimate its contrib-
ution. This approach has been successfully applied in previous
collisionless reconnection studies (Ng et al. 2015; Wang et al.
2015; Ng et al. 2017). In this framework, we estimate

d » - á ñ - - á ñ á ñh v k Tr P P n n T
1

2
,

21

e e ij e ij e ij e e e
th

0 , ,· ∣ ∣ [ ( ) ]

( )

where =v k T m2e e e
th

B is the thermal speed of the electrons.

The wavenumber =k L3 s0 ∣ ∣ is a representative wavenum-
ber associated with a subdomain of volume =V Ls s

3, where
Ls= 10.08di, which we select as the region to study the energy
conversion during the reconnection event. Panel (g) shows our
estimation of ∇ · he. There is a positive power density
contribution from particle heat flux inside the magnetic islands.
Conversely, there is a negative contribution in the regions
between the magnetic islands.

Panel (h) depicts the collisionless energy transfer u P:e e
between kinetic and thermal energies. This term has contribu-
tions from the diagonal elements of the tensors that are
associated with the isotropic energy transport and from the off-
diagonal elements that quantify the agyrotropy in the plasma.
There is positive  u P:e e in the region between the magnetic
islands that is associated with counterstreaming electrons. We

locate an x-like structure centered in the region where the
magnetic field strength exhibits a local minimum. In the region
between the x-points, as well as to the left of the diffusion
region,  <u P: 0e e .
Panel (i) shows the thermal energy transport e  ue e

th ·
associated with the compression/expansion of the electron
flow. At first glance, the positive/negative patterns in e  ue e

th ·
seem very similar to the patterns in u P:e e. The reason for this
similarity is that the main energy transport in u P:e e is
associated with the contribution of diagonal elements as we
show in Section 3.6. However, we find local differences due to
the agyrotropic contributions. From all terms on the left-hand
sides of Equations (8) and (11), only the terms associated with
the strain tensor present an extended asymmetric x-point-like
structure in the diffusion region. Comparing panels (c) and (i),
e  ue e

th · is on average larger and forms broader structures
than e  ue

k
e· .

Panel (j) shows Xs
th, which we compute as the sum of all

terms on the left-hand side of Equation (11). This energy
transfer is significant, as the different terms on the left-hand
side of Equation (11) do not add up to zero.
In Figure 7, we show vertical 1D cuts of the power density

terms along the p-direction at r = 5.58di to visualize the
relation between the different terms for plasma electrons. We
further show a magnification of the region delimited by the
black square from Figure 2. Panel (a) shows the kinetic power
density terms in Equation (8). We observe that the fluctuations
in ed dte

k (green line) and e  ue
k

e· (black line) are negligible

Figure 6. 2D cuts in the r-p plane at the simulation time w= -t 120 pi
1. (a−e) Kinetic power density terms for electrons. (f−j) Thermal power density terms for

electrons. All quantities are normalized to e wD = m vpi i i0 A,
2 . The vertical dashed lines in panels (a)−(f) show the 1D trajectory for our 1D analysis.
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compared with u Pe e· · (red line) and− qeneE · ue (yellow
line). However, there is a noticeable disturbance in all
quantities in the range p = 6.96di−7.84di, which is located
in the region of the diffusion region at which the magnetic field
is nearly zero. Along the 1D cut, u Pe e· · and− qeneE · ue
are anticorrelated. This anticorrelation breaks when the
disturbances in ed dte

k and e  ue
k

e· occur. For this panel,
the curve of Xs

k (blue line) changes sign when crossing the x-
point.

Panel (b) shows the thermal power density terms in
Equation (11). Comparing panels (a) and (b), we observe that
the fluctuations in the thermal power density terms are more
pronounced than those in the kinetic power density. In panel
(b), the fluctuations in ed dte

th (green line) and ∇ · he (red line)
are negligible compared with u P:s e (black line) and e  ue e

th ·
(yellow line). Unlike in the kinetic power density case, the
contributions from all terms in Equation (11) are either positive
or negative at the same location, showing no anticorrelation
between the dominant terms. We note that Xe

th (blue line),
unlike Xe

k, is positive on both sides of the x-point.
Figure 8 shows a 3D representation of the kinetic power

density terms in panels (a)−(d) and of thermal power density
terms in panels (e)−(h). The 2D cut at a= 2.76di corresponds
to the 2D cuts in Figure 6. The plotted 3D structures are
isosurfaces of the power density terms depicted on the 2D
planes. Panels (a)−(d) show that the isosurfaces of
e u Pd dt,e

k
e e· · and ee

k are mostly thin filaments, whereas
the isosurfaces of− qeneue ·E consist of broad patches.
Moreover, there are more regions with− qeneue ·E> 0 than
with− qeneue ·E< 0. Panels (e) and (f) show that the
isosurfaces of ed dte

th and ∇ · he are also filamentary.
Conversely, panels (g) and (h) show that the isosurfaces of
u P:s e and e  ue e

th · are mainly thin sheets.
Figure 9 depicts isosurfaces of Xe

k in panel (a) and Xe
th in

panel (b). The most evident isosurface of Xe
k is a filament

located within the reconnecting flux rope. Conversely, the
isosurfaces of Xe

th are mostly thin sheets connected to the flux
ropes.

3.5. Time Evolution

PIC simulations are affected by finite particle size, finite
number of particles, and numerical integration errors that are
effectively “collisional” contributions since they generate

phase-space particle diffusion (Hockney 1971; Dawson 1983;
Klimontovich 2013; Birdsall & Langdon 2018; Grošelj 2019).
Although the right-hand sides of the power density relations in
Equations (8) and (11) include the contributions from numerical
sources such as round-off errors and numerical heating, they also
include contributions from the averaged, secular (including quasi-
linear) correlations between fields and the particle distribution
functions (Klein & Howes 2016; Howes et al. 2017; Klein et al.
2017). As shown by the field–particle correlation method, mean-
ingful averages of the nonlinear correlations between the fluctuating
electric field and the fluctuating perturbation of the distribution
function define the secular transfer of energy from the fields to the
particles. Thus, even in a purely collisionless plasma, the right-hand
sides of Equations (8) and (11), after suitable averaging, are not
exactly zero. In this interpretation, the averaging over higher-order
field–particle correlations introduces irreversibility and thus
dissipation into the kinetic description. All PIC systems share this
behavior with statistical particle systems in reality.
In this section, we present a time evolution analysis of the

energy density terms in order to estimate the nature of Xs
k and

Xs
th. Figure 10(a) shows the time evolution of the energy

densities averaged over the full simulation domain (solid curves,
subscript “full”) and averaged over the subdomain (dashed
curves, subscript “sub”). The curves are normalized to e =0

m vi iA,
2 . The total energy density is e e e e e= + + + +T

e
k

i
k

e i
th th

eem. The averaged total energy densities eá ñT
full and eá ñT

sub (green
curves) remain approximately constant. This suggests that
numerical heating is negligible in our energy balance.
The thermal energy densities of both the ions (black curves)

and the electrons (magenta curves) are greater than the kinetic
energy densities of both the ions (yellow curves) and electrons
(red curves). When averaged over the subdomain, the energy
densities present more variability due to the inflowing and
outflowing of energy density through the boundaries of the
subdomain. Nevertheless, the time evolution of the quantities
εfull and εsub is approximately comparable.
Figure 10(b) depicts the time evolution of the absolute

values of the energy density ratesΔ〈ε〉/Δt (dashed curves) and
the dissipative power density rates Ξ (solid curves with circles),
now averaged over the full simulation domain and normalized
to eT

full. The time difference wD = -t 6 pi
1 is the difference

between two consecutive output times of our simulation.
As shown in panel (b), in the case of the ions, the thermal

energy density rate (black dashed curve) and the kinetic energy

Figure 7. 1D cuts of the power density terms along the p̂-direction at r = 5.58di and at the simulation time w= -t 120 pi
1. (a) Kinetic power density terms in

Equation (8). (b) Thermal power density terms in Equation (11). The vertical dashed line represents the crossing of the x-point at r = 5.58di and p = 6.6di.
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density rate (yellow dashed curve) are greater than the
dissipative power density terms Xi

th (black solid curve with
circles) and Xi

k (yellow solid curve with circles). The same

ordering applies to the electron case in which the thermal
energy density rate (magenta dashed curve) and kinetic energy
density rate (red dashed curve) are greater than Xe

k (red solid

Figure 8. 2D cuts in the r-p plane and isosurfaces of the power density terms at the simulation time w= -t 120 pi
1. (a−e) Kinetic power density terms for electrons. (f−j)

Thermal power density terms for electrons. All quantities are normalized to e wD = m vpi i i0 A,
2 .
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curve with circles) and Xe
k (magenta solid curve with circles).

For both species, Δεth increases faster than Δε k.
During the initial phase of the simulation (tωpi 100), we

find that áX ñ > áX ñe
k

e
th when averaged over the full simulation

domain. Afterward, for tωpi 100, we find that áX ñ < áX ñe
k

e
th

when averaged over the full simulation domain until the
simulation ends. The time tωpi≈ 100 corresponds to the
moment at which the overall Jrms reaches its global maximum
in our simulation and significant magnetic reconnection sets in
(Agudelo Rueda et al. 2021).

The total energy density rate eD T
full (green dashed curve) is

lower than Δε k and Δεth for both species. Moreover, áX ñe
th and

áX ñe
k are negligible compared with the kinetic and thermal

energy density rates. This suggests that any irreversible energy
transfer and thus numerical heating are negligible for the
energy balance in our simulation. However, Xe

th and Xe
k are

locally important near the reconnection region; see Figure 7.

3.6. Comparison with Damping and Heating Proxies

In recent studies (Yang et al. 2017; Pezzi et al. 2019;
Matthaeus et al. 2020; Pezzi et al. 2021), the collisionless
energy dissipation problem is tackled by studying quantities
such as the Zenitani parameter defined in Equation (16) and the
strain pressure interaction defined in Equation (20). We also
explore these damping and heating proxies for comparison with
our methods. Figure 11 depicts 2D cuts in the r-p plane and 1D
cuts of these damping and heating proxies. Panel (a) shows Dze.
Similar to our kinetic and thermal power density terms, the
magnetic islands present strong variations of Dze. On the
contrary, in the diffusion region, we see a coherent positive Dze

signature.
Panel (b) shows pθe. The positive/negative patterns of this

quantity are almost identical to our patterns of u P:e s (panel
(h)) in Figure 6. This similarity illustrates that the main
contribution to the strain tensor interaction comes from the
diagonal elements of the strain tensor.

Panel (c) shows Pi−De. Although the positive/negative
patterns in Pi−De are similar to those in pθe, Pi−De presents
clear differences, especially near the null region, where Pi−De

has the opposite sign of pθe along the separatrices. Moreover,
along the separatrices, |Pi – De|>Dze and they share the same
sign, whereas in the region between the x-points Pi−De< 0
and Dze> 0.
Panel (d) shows 1D cuts of Dze (blue line), pθe (red line), and

Pi−De (black line). We find that pθe is highly variable and, on
average, greater than Dze and Pi−De. This is considerably
different compared with the Harris current sheet case (Pezzi
et al. 2021), in which Dze is the dominant energy transfer
proxy. However, this behavior is consistent with turbulent
simulations (Pezzi et al. 2021) and with observations of
turbulent reconnection (Bandyopadhyay et al. 2021).

4. Discussion

The type of magnetic reconnection that occurs from a
turbulent cascade (Servidio et al. 2010; Loureiro & Bol-
dyrev 2020; Agudelo Rueda et al. 2021; Fadanelli et al. 2021)
presents a more complex geometry of the diffusion region
compared to its laminar counterpart. Likewise, the geometry of
the regions with enhanced energy transport and transfer is more
complex. Moreover, in a 3D geometry, the particle motion
along the out-of-plane direction allows energy transfer that a
2D geometry precludes. For instance, the agyrotropic patterns
in magnetic islands of 2D reconnection (Scudder & Daugh-
ton 2008) are located in the diffusion region outside the
magnetic islands. Conversely, in our 3D case, we observe
agyrotropic patterns in the cross section of the flux ropes,
which we call magnetic islands.
Since the plasma density is greater in the centers of the

magnetic islands, these regions exhibit a greater plasma
pressure compared to outside the islands. Patterns of
agyrotropic plasma pressure are present not only within the
magnetic islands but also in the regions between them
(Figure 3).

Figure 9. 2D cuts in the r-p plane and isosurfaces at the simulation time w= -t 120 pi
1. (a) Kinetic power density dissipation Xe

k . (b) Thermal power density dissipation
Xe

th. All quantities are normalized to e wD = m vpi i i0 A,
2 .
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The nonuniform guide magnetic field present in this
reconnection event affects its geometry. Despite the 3D nature
of this event, for the diffusion region in which |B|� 0.4B0, we
observe gyrotropic/agyrotropic patterns (Section 3.3) similar to
those observed in 2D laminar reconnection without a guide
field (Yin et al. 2001). However, given the complex geometry
of our event, we do not observe gyrotropic/agyrotropic
patterns matching 2D reconnection in the part of the diffusion
region below the x-points. Moreover, we do not observe a
quadrupolar pattern of the in-plane component Πpr,e

(Figure 4(d)) within the diffusion region, which is characteristic
of agyrotropy in 2D reconnection without a guide field (Yin
et al. 2001).

In the reconnection event that we analyze, although of
turbulent nature, the out-of-plane electron motion is consistent
with the 3D shape of electron diffusion regions observed in
laboratory plasmas (Furno et al. 2005; Yoo et al. 2013; Yamada
et al. 2014).

In our event, e >d dt 0e
k along the separatrices and

e <d dt 0e
k in the outer part of the reconnecting magnetic

island (Figure 6(a)). This corresponds to the acceleration of
electrons along the separatrices (Figure 6(c)) and the presence
of a stagnation region. The shear between the flux ropes
increases the electron thermal energy and pressure, and the
bulk kinetic energy reduces at the stagnation point.

At the locations of the separatrices,  >u P 0e e· ·
(Figure 6(b)). This suggests electron streams that increase the
electron pressure. Conversely,  <u P 0e e· · in the region
between the x-points. This suggests electron streams that
reduce the electron pressure and push the plasma within the
diffusion region to a local thermal equilibrium. While
reconnection is occurring, the high-pressure electrons fill the
diffusion region.
Within the diffusion region, the electric field increases the

electron kinetic energy density, and the work done by the
electric field on the electrons− qene(ue ·E) partially balances
with the advection of the electron pressure. This is consistent
with previous studies (Fadanelli et al. 2021).
The irreversible electron energy density change Xe

k

(Figure 6(e)) is nonzero everywhere in the vicinity of the
reconnecting structures. The quantity Xe

k displays structures
with positive and negative values within the magnetic islands,
suggesting that collisional processes accelerate and decelerate
electron bulk flows within the magnetic islands. Conversely, in
the diffusion region, the positive value of Xe

k indicates that
electrons are irreversibly accelerated.
Unlike previous studies of turbulent reconnection (Fadanelli

et al. 2021), we estimate the electron thermal energy transfer
associated with each term of Equation (11). Compared to the
case of the kinetic power density, the thermal power density
terms present stronger fluctuations. This is evident when

Figure 10. (a) Time evolution of the energy densities averaged over the full simulation domain (solid curves) and over the subdomain (dashed curves). The total
energy density is e e e e e e= + + + +T

e
k

i
k

e i
th th em. (b) Time evolution of the absolute values of the energy density rates Δ〈ε〉/Δt (dashed curves) and the dissipative

power densities Ξ (solid curves with circles), averaged over the full simulation domain and normalized to eT
full.
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comparing ed dte
k (Figure 6(a)) and ed dte

th (Figure 6(f)), as
well as comparing e  ue

k
e· (Figure 6(c)) and e  ue e

th ·
(Figure 6(i)). This difference suggests that the electron bulk
flows more efficiently transport thermal energy density than
bulk kinetic energy density.

The power density terms associated with the compression/
expansion of the flow u P:e s and e  ue e

th · exhibit a strong
coherence with the electron motion along the reconnection
separatrices. The electron streams gain thermal energy (i.e.,
heating) associated with the reconnection. This is consistent
with simulations of fast collisionless reconnection at low β

(Loureiro et al. 2013) and observations of magnetospheric
reconnection (Chasapis et al. 2017; Holmes et al. 2019).

The most important contribution to u P:e s comes from the
isotropic part of the strain pressure term. Correspondingly,
e  ue e

th · presents patterns similar to u P:e s . Moreover, the
contribution of the off-diagonal elements in ∇ue and Pe to the
thermal energy transport is less than the isotropic contribution,
which is consistent with previous studies of turbulent
reconnection (Bandyopadhyay et al. 2021; Fadanelli et al.
2021). The terms associated with electron compressibility
(e  ue e

th · and u P:e s) are typically greater than the heat flux
contribution (∇ · hs), suggesting that, for collisionless recon-
nection, compressible thermal energy density transport is
important for electrons. On average, within the subdomain,
the electrons gain kinetic energy at the expense of the electric
field (Figure 8(d)). The electrons both lose and gain thermal
energy (Figures 8(g) and (h)) predominantly along thin sheet-
like structures.

Similar to the irreversible kinetic energy density transfer Xe
k,

the irreversible thermal energy transfer Xe
th is nonzero within

the reconnecting structures, as well as within the diffusion
region. Moreover, electrons irreversibly gain thermal energy
density at the location of the separatrices and within the
diffusion region.

The irreversible kinetic energy density transfer is mainly
confined to the flux ropes in our simulation (Figure 9(a)).
Conversely, the irreversible thermal energy density transfer
(Figure 9(b)) occurs in thin sheet-like structures that extend for
over 5di.

Although áX ñe
k is negligible compared to eD e

k (Figure 10(b)),
the fact that Xe

k is comparable in magnitude to qeneE · ue and
u Pe e· · (Figure 7(a)) implies that Xe

k must be considered in
the local kinetic energy transfer of electrons, as it includes
important information about the oscillating energy associated
with instantaneous field–particle correlations (Klein &
Howes 2016; Howes et al. 2017; Klein et al. 2017). Only
meaningful averages of the nonlinear correlations between the
fluctuating electric field and the fluctuating perturbation of the
distribution function define the secular transfer of energy from
the fields to the particles. Therefore, we propose that an energy
balance analysis based on the energy density expressions
derived from the collisionless Vlasov equation is not entirely
accurate for kinetic simulations. Because numerical effects in
kinetic simulations act as an effective collision operator, the
energy balance equations derived from the Vlasov equation
without provision for the terms on the right-hand side of
Equation (1) are not exactly satisfied.
Comparing our results with damping (Dze) and heating (pθe

and Pi−De) proxies (Pezzi et al. 2021), we observe that
fluctuations of pθe inside the diffusion region (Figure 11(d)) are
typically greater than fluctuations of Dze and Pi−De.
Integrating over the subdomain (not shown here), we find that
pθe/Δε0|V> |Pi−De|/Δε0|V. This suggests that, within the
subdomain, the electron heating is mostly due to compressive
effects. This is consistent with results from turbulent simula-
tions (Pezzi et al. 2021) and observations of turbulent
reconnection (Bandyopadhyay et al. 2021) but not with results
from simulations of laminar reconnection.
The proxies pθe and Pi−De share the same signs at most

locations in our simulation domain. However, in the diffusion
region near the null region, the opposite sign of Pi−De and
pθe suggests that agyrotropic heating mechanisms can emerge
to compensate for any reduction or increase in the thermal
energy density due to isotropic heating mechanisms. Moreover,
integrating over the subdomain and over time, we find that
pθe|V,t= 0.0137 and Pi−De|V,t=− 0.0190 in the units used in
Figure 11. This suggests that pθe is greater than Pi−De within
the diffusion region at the particular time selected but not
throughout the whole simulation, due to a local effect.

Figure 11. Damping and heating proxies at the simulation time w= -t 120 pi
1. (a) 2D cuts in the r-p plane of the Zenitani parameter for electrons Dze. (b) Diagonal part

of the strain pressure interaction pθe. (c) Off-diagonal part of the strain pressure interaction Pi − De. (d) 1D cut of these terms as in Figure 7.
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The positive values of Dze and the negative value of pθe and
Pi−De in the region between the x-points suggest that
electrons gain kinetic energy density from the fields while
losing thermal energy density. Between the x-points, the
electric field accelerates electrons (Figure 6(d)). The increase in
the electrons’ kinetic energy density may be due to Landau
damping (Landau 1946; Howes et al. 2006; Li et al. 2016).
Conversely, the magnetic pressure (not shown here) increases
near the region between the x-points. The total pressure balance
requires a depletion of pe and pi (as confirmed by Figures 3(a)
and (e)) in the diffusion region. Plasma pressure depletion has
been suggested to be responsible for the onset of fast
reconnection in collisionless plasmas (Liu et al. 2022). Thus,
the expansion and the consequential cooling off of the electrons
reduce their thermal energy.

5. Conclusions

We derive a framework to quantify the collision-like effects
that lead to irreversible energy transfer and thus dissipation in
PIC plasmas. We identify and locate magnetic reconnection as
a key mechanism for heating, damping, and dissipation in
plasma turbulence in low-collisionality systems like the
solar wind.

Previously, the transfer and transport of energy in plasmas
with low collisionality have been studied separately in
simulations of reconnection (Hesse & Winske 1998; Hesse
et al. 2001; Zenitani et al. 2011; Muñoz et al. 2017; Pucci et al.
2018; Pezzi et al. 2019, 2021) and turbulence (Wan et al. 2012;
Yang et al. 2017; Li et al. 2019; Pezzi et al. 2021). The transfer
and transport in magnetic reconnection that forms from a
turbulent cascade have been limited to 2D geometries (Parashar
et al. 2009; Fadanelli et al. 2021) and observations (Chasapis
et al. 2018; Bandyopadhyay et al. 2020), while the 3D case has
received little attention. We study, for the first time, the energy
transport associated with 3D magnetic reconnection that occurs
as a consequence of a turbulent cascade to a high level of detail
and including all power density terms resulting from the full
Boltzmann equation. We extend the analysis of similar studies
(Fadanelli et al. 2021) by exploring the transfer and transport of
thermal energy for electrons.

The energy transfer and transport in collisionless plasmas is
believed to be governed by nonthermal and kinetic mechanisms
such as resonant (Marsch et al. 2003; Kasper et al. 2008) and
nonresonant heating processes (Chandran et al. 2010, 2013).
However, the irreversible energy transport is ultimately
associated with collisional effects (Schekochihin et al. 2009).

The agyrotropy signatures present in the reconnection
diffusion region and in the reconnecting magnetic structures
allow for agyrotropic energy transfer mechanisms such as
agyrotropy-driven instabilities to take place not only near the
electron diffusion region (Ricci et al. 2004; Roytershteyn et al.
2012; Graham et al. 2017) but also within the reconnecting
magnetic structures. These signatures are 3D, as they extend in
the a-direction for over 5di. A future study of the instabilities
that occur during a 3D turbulent reconnection event would be
worthwhile to enhance our understanding of the collisionless
energy dissipation.

We show that the contributions to the energy density transfer
from the effective collision terms are not negligible. To
determine the exact source of these contributions, future work
must use a large number of particles while keeping the 3D
geometry. In addition, the inclusion of a controllable collision

operator would allow for a detailed study of collisions in 3D
reconnection (Pezzi 2017; Donnel et al. 2019; Boesl et al.
2020; Pezzi et al. 2021).
The general framework that we introduce is suitable for

estimating the irreversible energy density transfer in the solar
wind. For instance, Equations (8) and (11) can be applied to
spacecraft data to study the radial evolution of energy as a
function of heliospheric distance in the solar wind. This work
would be of interest for the energetics of both solar wind
electrons (Scime et al. 1994; Innocenti et al. 2020) and solar
wind protons (Matteini et al. 2007; Hellinger et al. 2011;
Adhikari et al. 2020).
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Appendix
Derivation of the Equations for the Energy Densities

To derive the nth moment of the Boltzmann Equation (1), we
take the dyadic product of Equation (1) with vn on the left and
integrate the equation over the entire velocity space. The zeroth
moment leads to

¶
¶

+  = Xu
n

t
n . A1s

s s s
0· ( ) ( )

The collision operator has the property X = 0s
0 , as it must

conserve the number of particles. In this case, Equation (A1) is
the continuity equation. The first moment leads to
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We separate the second moment in Equation (A3) according
to  =  + P uunm· · · ( ) , where P is defined in
Equation (4). Invoking Equation (A1), Equation (A2) takes
the form
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This equation describes the total change in time of the bulk
momentum density for each species.
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The second moment of Equation (1) yields
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where Qijk,s represent the elements of the heat flux tensor
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Equations (A4) and (A5) are the exact first and second
moments of Equation (1).

We proceed to derive expressions for the energy densities es
k

and es
th. For this purpose, we take the scalar product of

Equation (A4) with us, which leads to Equation (8). To obtain
an expression for the thermal energy εth, we take the trace of
Equation (A5). For the calculation of the trace of the cross
product terms in Equation (A5), we use an element-wise
approach. If A is a vector and  is a tensor of rank two, the
cross product is defined as ´A  = Ä ^ ^e eA Mlip i pq

l q. It can
be shown that ´ A =- ´A T T( ) , where T is the
transpose of and ´ = A A MTr ijk i jk( ) . Moreover, if is
a symmetric tensor, then ´ =ATr 0( ) . In addition, the trace
of  Q· corresponds to 2∇ · h. This procedure leads to
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Combining Equations (8) and (A7), we obtain Equation (11).
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